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Abstract

The zero error capacity Cq of a noisy
channel is defined as the least upper bound of
rates at which it is possibdle to transmit infor-
maetion with zero probability of error. Various
properties of C, are studied; upper and lower
bounds and methods of evalvation of C, are given.
Inequzlities are obtained for the Cq relating to
the "sum" and "product" of two given channels.
The analogous problem of zero error capacity Cop
for a channel with a feedback link is considered.
It is shown that while the ordinary capacity of
a menoryless channel with feedback is equal to
that of the same channel without feedback, the
zero error capacity may be greater. A solution
is given to the problem of evaluating Cgp.

Introduction

The ordinary capacity C of a noisy channel
may be thought of as follows. There exists a
sequence of codes for the channel. of increasing
block length such that the input rate of trans-
mission approaches C and the probability of error
in decoding at the receiving point approaches
zero. Furthermore, this is not true for any
value higher than C. In some situstions it may
ve of interest to consider, rather than codes
with probability of error approzchinz zero, codes
for which the probability is zero and to
investigate the highest vpossible rate of trans-
mission (or the least upper bound of these rates)
for such codes. This rate, Cp, is the main
object of investigation of the present paper.
It is interesting that while C4y would appear to
be a simpler property of a chennel than C, it is
in fact more difficult to calculate and leads to
a number of as yet umsolved problems.

We shall consider only finite discrete
memoryless channels. Such a channel is specified
by & finite transition matrix [[pi(j)ll where
pi(J) is the probability of input letter i being
received as output letter j (i = 1,2,...,a;
j=1,2,...,b) and p3(J) = 1. Equivalently,
such a channel may be represented by a line
diagram such as Fig. 1.

The channel being memoryless means that
successive operations are independent. If the
input letters i and j are used, the probability
of output letters k and 1 will be pi(k)Iﬁ(ll
A sequence ,of input letters will be called an
input word, a sequence of output letters an
outvut word. A mapping of M messages (which we

Fig, 1

may take to be the integers 1,2,...,M) into a
subset of input words of length n will be.called
a block code of length n. R =1 log M will be
called the invput rate for this code. Unless
otherwise specified, a code will mean such a
block code. We will, throughout, use natural
logarithms and natural (rather than binary) units
of information, since this simplifies the
analytical processes that will be employed.

A decoding system for a block code of
length n is a method of associating a unique
input message (integer from 1 to M) with each
possible output word of length n, that is, a
function from output words of length n to the
integers 1 to M. The probability of error for a
code is the probability when the M input messages
are used each with vprobability 1/M that the noise
and the decoding system will lead to an input
message different from the one that actually

occurred.

If we have two given channels, it is
possible to form a single channel from them in
two natural ways which we call the sum and
product of the two channels., The gum of two
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channels is the channel formed by using inputs
from either of the two given channels with the
same transition probabilities to the set of out-
put letters consisting of the logical sum of the
two output alphabets. Thus the sum channel is
defined by a transition matrix formed by placing
the matrix of one channel below and to the right
of that for the other channel and filling the
remaining two rectangles with zeros. If pi(j)
and llp{(d)" are the individual matrices, the

sum has the following matrix:

1) . p,(r) o. . .0
ﬁt(l) .o ét(r) 0. . .0
) . . . 0 p]i(l) ... pi(r')
0 0 13,"'(1). ) .i:;'(r')

The product of two channels is the channel
whose input alphabet consists of all ordered
pairs (i,1') where i is a letter from the first
channel alphabet and i' from the second, whose
output alphabet is the similar set of ordered
pairs of letters from the two individual ocutput
alphabets and whose transitjon Probability from
(1,4%) to (J,3" 1= p,(J) »;' (5.

The sum of channelscorresponds physically
to a situation where either of two channels may be
used (but not both), a new choice being made for
each transmitted letter. The product channel
corresponds to a situation where both channels
are used each unit of time. It is interesting to
note that multiplication and addition of channels
are both associative and commutative, and that
the product distributes over a sum. Thus one can
develop a kind of algebra for channels in which
it is possible to write, for example, a polynomial
i:anKn, vwhere the a, are non-negative integers a
and K is a channel. We shall not, however,
investigate here the algebraic properties of this
system,

The Zero Error Capacity

In a discrete channel we will say that two
input letters are adjacent if there is an output
letter which can be caused by either of these two.
Thus, i and. j are adjacent if there exists a ¢
such that both p;(t) and pj(t) do not vanish. In
Fig. 1, & and ¢ are adjacent, while a and d are
not.

If all input letters are adjacent to each
other, any code with more than one word has a
probability of error at the recelving point
greater than zero. In fact, the probability of
error in decoding words satisfies

M1 n
Pe;> M 1)min

where p is the smallest {non-vanishing) among

the p1(j), n is the length of the code and M .is
the number of wordg in the code. To prove this,
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note that any two words have a possible output
word in common, namely the word consisting of the
sequence of common output letters when the two in-
put words are compared letter by letter, ZEach of
the two input words has a probability at least
pﬁin of producing this common output word. In
using the code, the two particular input words
will each occur 1l of the time and will cause the
common output % pgin of the time. This output
can be decoded in only one way. Hence at least
one of these situations leads to an error. This
error, I P;in’ is assigned to this code word, and
from the remaining M - 1 code words another pair
is chosen. A source of error to the amount

ﬁ P;in is assigned in similar fashion to one of
these, and this is a disjoint event. Continuing
in this manner, we obtain a total of at least

M-~-1_12
T Ppip 88 probability of error.

If it is not true that the input letters
are all adjacent to each other, it is possible to
transmit at a positive rate with zero probability
of error, The least upper bound of all rates
which can be achieved with zeroc probability of
error will be called the zero error capacity of
the channel and denoted by Co. If we let My(n) be
the largest number of words in a code of length n,
no two of which are adjacent, then C, is the least
upper bound of the numbers i log Mo(n) when n

varies through all positive integers.

One might expect that C, would be equal to
log My(1l), that is, that if we choose the largest
possible set of non-adjacent letters and form all
sequences of these of length n, then this would be
the best error free code of length n., This is not,
in general, true, although it holds in many cases,
particularly when the number of input letters is
small, The first failure occurs with five input
letters with the channel in Fig, 2, In this
channel, it is possible to choose at most two non-
adjacent letters, for example 0 and 2. Using
sequences of these, 00, 02, 20, and 22 we obtain
four words in a code of length two, However, it
is possible to construct a code of length two with
five members no two of which are adjacent as
follows: 00, 12, 24, 31, 43, It is readily
verified that no two of these are adjacent.
C, for this channel is at least % log 5.

Thus,

Fig, 2



Ko method has been found for determining
C, for the general discrete channel, and this we
propose as an interesting unsolved problem in
coding theory. We shall develop a number of
results which enable one to determine C, in many
special cases, for example, in all channelswith
five or less input letters with the single excep-
tion of the channel of Fig. 2 (or chanmnels
equivalent in adjacency structure to it). We
will also develop some general inequalities
enabling one to estimate Co quite closely in most
cases.

It may be seen, in the first place, that
the value of C, depends only on which input
- letters are adjacent to each other. Let us
define the adjacency matrix for a channel, Aijo
as follows.

1 if input letter 1 is adjacent to j or
if 1=

0 otherwise

Ay =

Suppose two channelshave the same adjacency
matrix (possibly after renumbering the input
letters of one of them). Then it is obvious that
a zero error code for one will be a zero error
code for the other and, ‘-hence, that the zero
error capacity Co for one will also apply to the
other.

The adjacency structure contained in the
ad jacency matrix can also be represented as a
linear graph. Construct a graph with as many
vertices as there are input letters, and connect
two distinct vertices with a line or branch of
the graph if the corresponding input letters are
adjacent. Two examples are shown in Fig, 3,
corresponding to the channels of Figs., 1 and 2.

o
o

[ 1)

Fig. 3

Theorem 1: The zero error capacity C, of
a discrete memoryless channel is bounded by the
inequalities

- Y
log ;1111 E Aij PiP;j .{CO\ mix?.) c
14y p,(J

Af_..Pi =1, P20
= p,(3) =1, p,(3) 2 0
J

where C is the capacity of any channel with
transition probabilities pi(j) and having the
adjacency matrix Aij'

The upper bound is fairly obvious, The
zero error capacity is certainly less than or
equal to the ordinary capacity for any channel
with the same adjacency matrix since the former
requires codes with zero probability of error
while the latter requires only codes approaching
zero probability of error. By minimizing the
capacity through variation of the pi(j) we find
the lowest upper bound available through this
argument. Since the capacity is a continuous
function of the pi(J) in the closed region
defined by py(j) = 0, pi(j) =1, we may
write min instead of greatest lower bound.

It is worth noting that it is only neces-
sary to consider a particular channel in perform-
ing this minimization, although there are an
infinite number with the same adjacency matrix.
This one particular channel is obtained as
follows from the adjacency matrix. If Aik =1
for a pair i k, define an output letter " j with
p, (J) and pk(j) both differing from zero. Now
1% there are any three input letters, say 1 k 1,
all adjacent to each other, define an output
letter, say m, with py(m) pr(m) py(m) all dif-
ferent from zero. In the adjacency graph this
corresponds to a complete sub-graph with three
vertices. Next, subsets of four letters or
complete subgraphs of four vertices, say i k 1 m,
are given an output letter, each being comnected
to it, and so on., It is evident that any channel
with the same adjacency matrix differs from that
Just described only by variation in the number of
output symbols for some of the pairs, triplets,
etec,, of adjacent input letters. If a channel
has more than one output symbol for an adjacent
subset of input letters, then its capacity is
reduced by identifying these. If a channel
contains no element, say for a triplet i k1 of
ad jacent input letters, this will occur as a
special case of our canonical channel which has
output letter m for this triplet when py(m),
pk(m) and pl(m) all vanish,

The lower bound of the theorem will now be
proved. We use the procedure of random codes
based on probabilities for the letters Py, these
being chosen to minimize the quadratic form

:E AijPin' Construct an ensemble of codes
1
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each containing M words, each word n letters long.

The words in a code are chosen by the following
stochastic method. Fach letter of each word is
chosen independently of all others and is the
letter i with probability Pi’ We now compute the
probability in the ensemble that any particular
word is not adjacent to any other word in its
code, The probability that the first letter of
one word is adjacent to the first letter of a
second word is E— AijPin, since this sums

the cases of adjacency with coefficient 1 and

those of non-adjacency with coefficient 0. The

probability that two words are adjacent in all

letters, and therefore adjacent as words, is

( ﬁl A, P,P )0, The probability of non-adja-
tered - n

cency is therefore 1 - ( 5 AijPiPJ) . The

probability that all M - 1 other words in & code

are not adjacent to a given word is, since they

are chosen independently,

M -1
A ( & PP )"
[ Favar]

which is, by & well known inequality, greater

then 1 - ( M - 1)( g Ay B,P;)", which in turn

is greater than 1 - M ( 21-;- A”Pin)n. If we
M=(1-% 2 4 -a

set (1-e)'( 5 AuPiP , we then have,

by teking ¢ small, a rate as close as desired to

- log E_ AijPin' Furthermore, once ¢ is

chosen, by taking n su.fficiegtly large, :e can
insure that M( % AiJPin) = (1 - ¢€)is as
small as desired, say, less than 8. The
probability in the ensemble of codes of a
particular word being adjacent to any other in
its own code is now less than &8, This implies
that there are codes in the ensemble for which
the ratio of the number of such undesired words
%o the total number im the code is less than or
equal to 8. TFor, if not, the ensemble average
would be worse than 8. Select such a code and
delete from it the words having this property.
We have reduced our rate only by at most

log (1 - 8)-1, Since ¢ and 5 were both
arbitrarily small, we obtain error-free codes
arbitrarily close. to the rate-log :

gin 12.1-‘ Ai._]l:‘:“P.j as stated in the theorem.

In connection with the upper bound of
Theorem 1, the following result is useful in
evalusting the minimum C. It is also interest-
ing in its own right and will prove useful later
in connection with channelshaving a feedback
link. )

Theorem 2: In a discrete memoryless
channel with transition probabilities py(Jj) and .

input letter probabilities Py the following
three statements are equivalent,

1) The rate of transmission

Re & ppy(9) t0e (0D T Bep(9)
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is stationary under variation of all non-vanish-
ing Py subject to 3_ 'Pi = 1 and under varia-

tion of p,(J) for_those p, (J) such that P,p,(§)>0

and subject to 3\-_- p(3) = 1.

2) 'The mutual information between input-
output pairs Ii.‘l = log (Pi(.‘l)/ % Pp(3)) is

constant, Iij = I, for all ij pairs of non-vanish-
ing provability (i.e. pairs for which Pipi(;j)'> 0).

3) We have pi(J) =r, a function of J

only whenever Pipi('j))(_); and also 1ch ;p1 = h,

a constant independent of j where S 3 is the set

of input letters that can produce output letter J
with probability greater than zero. We also have
1 = log h-1l.

The p;(J) and Py correspording to the
maximum and minimum capacity when the pi(j) are
varied (keeping, however, any py(Jj) that are zero
fixed at zero) satisfy 1), -2) and 3).

Proof: We will show first that 1) and 2)
are equivalent and then that 2) and 3) are
equivalent.

R is a bounded continouus function of its
arguments P, and pi(,j) in the (bounded) region

of allowed values defined by Z Pi =1, P, 20,
S p(3) =1, p,(3)20. Bhas’a finite
3 .

partial derivative with respect to any pi(j)>0.
In fact, we readily calculate

OR _ _
55,(3) = P, log (p,(J)/ % P p ()

A necessary and sufficient condition that R be
stationary for small variation.of the non-
vanishing pi(.j) subject to the conditions given
is that

. aR =
ARG,

for ell i, J, k such that P,, pi(j), Pi(k) do not
vanish. This requires that

P, log pi(.‘l) / mszPm(.)') =

P, log  p,(k) / nZPmpm{k)

If we let Q, = P p (j), the probability of
il — onm

output letter j, then this is equivalent to



() By (k)
Q:j &

In othex:;words, Pi(j)/q;j is independent of j, &

function of i only whenever P, >0 and pi(j)>0.

Thus

i

This function of 1 we call & .

unless Pipi(;j) =0,

Now, taking the partial derivative of R
with respect to P1 wve obtain:

' p, (3)
5—%= T n0) 106 -73-5-— -1

For R to be stationary subject to % Py =1
we must have BR/ ®, = aBlaPk. Thus

3 py(8) 22 219 S p (5) 20e BW)

J g J Qy

Since for Pipi(j)>0 we have pi(J)/QJ. = o, this
becomes

JZ py(J) log a = JZ P (J) log o
log 4 = log %
Thus % is independent of 1 and may be written a.
Consequently
py(J)
Y
p ()
log = log a= 1
%

whenever Pipi(j) >0.

The converse result is an easy reversal of
the above argument. If

log pi('j) = I, then
%
aa/aPi =1 -1, by & simple substitution in the

OR/3P, formula. Hence R is stationary under
variation of P1 constrained by = Pi = 1.
Further, aR/api(;)) =P I= BR/api(k), and hence

the variation of R also vanishes subject to

2,1: p,(9) = 1.

We now prove that 2) implies 3).

log pi(‘j) = I whenever Pipi(d)>°' Then pi(j)
Q
J

= eI Qj,, e function of j only under this same

condition. Also, if qj(i) ig the tonditional
probability of 1 given' j, then

Suppose

qj(i) = ol P

iesj

To prove that 3) implies 2) we assume

1 = S q,(1) = o 3P
3 e8] i

Py () = 7

when Pipi(.j)>0. Then

P ) _ory - n (o) =Qﬂq5(i)= a4(1)

Fow, summing the equation Pi)‘j = qj(i) over i.esj

and using the assumption from 3) that F P, =h
we obtain J

hi, =1
J

80 A 5 is bt and independent of J. Hence I, 5= 1

= log h-l.

The last statement of the theorem concern-
ing minimum and maximum capacity under variation
of pi(;)) follows from the fact that R at these

points must be stationary under variation of all
non-vanishing P, and pi(J), and hence the

corresponding P, and pi(j) satisfy condition 1)

of the theorem,

For simple channels it is usually more
convenient to apply particular tricks in trying
to evaluate C, instead of the bounds given in -
Theorem 1, which involve maximizing and minimizing
processes. The simplest lower bound, as mentioned
before, is obtained by merely finding the
logarithm of the maximum number of nom-adjacent
input letters.

A very useful device for determining Co
which works in many cases may be described using

the notion of an adjacency-reducing mapping.
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By this we mean & mapping of letters into other
letters, i-»a(i), with the property that if i and
Jj are not adjacent in the channel (or graph) then
(1) and a(j) are not adjacent. If we have a
zero-error code, then we may apply such a mapping
letter by letter to the code and obtain & new
code which will also be of the zero-error type,
since no adjacencies can be produced by the
mapping.

Theorem 3: If all the input letters i can
be mapped by an adjacency-reducing mapping
1-20{1) into a subset of the letters no two of
which are adjacent, then thé zero-error capacity
Co, of the channel is equal to the logarithm of
the number of letters in this subset.

For, in the first place, by forming all
sequences of these letters we obtain a zero-error
code at this rate. Secondly, any zero error code
for the channel can be mepped into a code using
only tgese letters and containing, therefore, at

most e o non-adjacent words.

The zero-error capacities, or, more exactly,
the equivalent numbers of input letters for all
edjacency graphs up to five vertices are shown in
Fig. 4. These can all be found readily by the
method of Theorem 3, except for the channel of
Fig. 2 mentioned previcusly, for which we know
only that the zero-error capacity lies in the
range 4 log 5 < G, slog_g,.

All graphs with eix verticee have been
examined and the capacities of all of these can
also be found by this theorem, with the exception
of four. These four can be given in terms of the
capacity of Fig. 2, so that this case is essen-
tially the only unsolved problem up to seven
vertices., Graphs with seven vertices have not
been completely examined but at least one new
situation arises, the analog of Fig. 2 with seven
input letters,

As examples of how the ¥, values were
computed by the method of adjacency-reducing
mappings, several of .the graphs in Fig. 4 have
been labelled to show a suitable mapping. The
scheme is as follows, All nodes labelled a are
mapped into node G as well as aitself, All
nodes labelled b and also B are mapped into nodeB.
All nodes labelled ¢ and v are mapped into node
. It is readily verified that no new adjacen-
cies are produced by the mappings indicated and
that the A, B,Y nodes are non-adjacent.

Co for Sum and Product Channels

Theorem 4: If two memoryless channels have
zero-error capscities C§ = log A and Cy = log B,
their sum has a zero-error capacity.greater than
or equal to log (A + B) and their product a zero
error capacity greater than or equal to Co + Co.
If the graph of either of the two channels can
be reduced to non-adjacent points by the mapping
method (Theorem 3), then these inequalities can
be replaced by equalities,
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Proof: It is clear that in the case of
the product the zero error capacity is at least
c + cg, since we may form a produgt code from two
codes with rates close to G, and C,. If these
codes are not of the same length, we use for the
new code the least common multiple of the indi-
vidusl lengths and form all sequences of the code
words of each of the codes up to this length. To
prove equality in case one of the graphs, say that
for the first chgnnel, can be mapped into A non-
sdjacent points, suppose we have a code for the
product channel., The letters for the product .
code, of course, are ordered pairs of letters .
corresponding to the original channels. Replace |
the first letter in each pair in all code words.
by the lettef corresponding to reduction by the
mapping method. This reduces or preserves
adjacency between words in the code, Now sort
the code words into AR subsets according to the
sequences of first letters in the ordered pairs.
Fach of these subsets can contain at most BR
members, since this is the largest possible number
of codes for the second chammel of this length.
Thus, in total, there are at most ARBR ywords in
the code, giving the desired result.

In the case of the sum of the two channels,
we first show how, from two given codes for the
two channels, to construct a code for the sum
channel with equivalent number of letters equal
to Al -¢ 4+ 3l =S , where § is arbitrarily small
and A and B are the equivalent number of letters
for the two codes., Let the two codes have
lengths n; and n,. The new code will have length
n where n is the smallest integer greater than
both and Now form codes for the first

channel and .for the second channel for all
lengths k from zero to n as follows. Let k equal
any + b, where. a and b are integers and b £ n;.

We form all sequences of a words from the given
code for the first channel and fill in the
remaining b letters arbltrarily, say all with the
first letter in the code alphabet. We achieve
at least ,k - §1 different words of length k none
of which is adjacent to any other. In the same
way we form codes for the second channel and
achieve = OB yords in this code of length k.
We now intermingle the k code for the first
channel with the n - k code for the second channel
in all (k)possible ways and do this for each
value of k. This produces a code n letters long
with at least é () ak =~ n8 go- k- n$

=0

= (48)"%(a + B)® aifferent words. It is readily
seen that no two of these different words are
adjacent. The rate is at least log (A + B) - §
log AB, and since § was arbitrarily smell, we can
achieve o rate arbitrarily close to log (4 + B).

To show that it is not possible, when one
of the graphs reduces by mapping to non-adjacent
points, to exceed the rate corresponding to the
number of letiers A + B, consider any given code
of length n for the sum channel. The words in
this consist of sequences of letters each letter
corresponding to one or the other of the two



ONE NODE TWO NODES THREE NODES
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Fig. L ~ A1l graphs with 1, 2, 3, L, 5 nodes and the correspondln;' N, for chan-
nels with these as ad,jacency graphs (note C, = log No )
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channels. The words may be subdivided into
classes corresponding to the pattern of the
choices of letters between the two channels.
There are 2B such clagses with (ﬂ) classes in
which exactly k of the letters are from the first
channel and n - k from the second, Consider now
& particular class of words of this type. BRe-
place the letters from the first channel alphabet
by the -corresponding non-adjacent letters. This
does not harm the adjacency relations between
words in the code. Now, as in the product case,
partition the code words according to the
sequence of letters involved from the first
channel, This produces at most A¥ gubsets. EBach
of these subsets contains at most BR® = X members,
since this is the greatest possible number of non-
adjacent words for the second channel of length
n - k. In total, then, summing over all values
of k and taking sccount of the (§) classes for
each k, there are at most J_ ) Ak gn -k

k 'k

=(4 + B)® words in the code for the sum channel.
This proves the desired result.

Theorem 4, of course, is analogous to
known results for ordinary capacity C, where the
product channel has the sum of the ordinary
capacities and the sum channel has an equivalent
number of letters equal to the sum of the equiva-
lent numbers of letters for the individual
channels. We conjecture but have not been adle
to prove that the equalities in Theorem 4 hold
in gemeral, not just under the conditions given.
We now prove a lower bound for the probability of
error when transmitting at a rate greater than C,.

Theorem 5: In any code of length n and
rate R > Co' C, > 0, the probability of error Fg

-n(Cq ~ R) n
will satisfy P 2 (1 - e )P pin
P

p is the minimum non-vanishing pi(J).

where

mi:

Proof: By definition of Co there are not
more than enCo non—agﬂacent words of length n.
With R > Cp, among e words there must, therefore,
be an adjacent pair. The adjacent palr has &
common output word which either can cause with a
probability at least p & . This output word can-

‘min

not be decoded into both inputs. At least one,
trorefore, must cause an error when it leads to
this output word. This gives a contribution at
least ¢~BR Pﬁin to the probability of error Pg.

Now omit this word from consideration and apply
the same argument to the remaining e -1 words

of the code. This will give another adjacent pair
and_another contribution of error of at least

e pgin' The process may be continued until the

number of code points remaining is just enc°. At
this time, the computed probability of error must

be at least _ BCoy . -nR n
(e e e Ppin
en(Co - R)) o

= Q- min’

Channelswith s Feedback Link

We now consider the corresponding problem
for channels with complete feedback, By thie we
mean that there exists a return channel sending
back from the receiving point to the transmitting
point, without error, the letters actually
received. It is assumed that this information is
received at the transmitting point before the next
letter is transmitted, and can be used, therefore,
if desired, in choosing the next transmitted
letter. ‘

It is interesting that for a memoryless
channel the ordinary forward capacity is the same

with or without feedback. This will be showz in
Theorem 6. On the other hand, the zero errcr
capacity may, in some cases, be greater witl
feedback than without. In the channel shown in
Fig. 5, for example, C° = log 2. However, we
will see as a result of Theorem 7 that with
feedback the zero error capacity COF = log 2.5.

Fig. 5

We first define a block code of length n
for a feedback system. This means that at the
transmitting point there is a device with two
inputs, or, mathematically, a function with two
arguments. One argument is the message to be
transmitted, the other, the past received letters
(which have come in over the feedback link), The
value of the function is the mext letter to be
transmitted. Thus, the function may be thought

) = +
of as X541 £ (i, vj) where LT is the j + 1
transmitted letter in a block, k is an index
ranging from 1 +to M, and represeants the

specific message, and vj is a received word of
length j. Thus j ranges from O ton -~ 1 and v.j

over all received words of these lengths.

In operation, if message mk is to be sent
f is evaluated for f(k -) where the - means "no

15
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word" and this is sent as the first transmitted
letter. If the feedback link sends bafk a, say,
as the first received letter, the next trans-
mitted letter will be f(k, a). If this is
received as B. the next transmitted letter will
ve f(k,a B), etc.

Theorem 6: In a memoryless discrete
channel with feedback, the forward capacity is

equal to the ordinary capacity C (without feed-
back). The average change in mutual information
Ivm between received sequence v and megsage m

for a letter of text is not greater than C.

Proof: Let v be the received sequence to
date of a block, m the message, x the next trans-
mitted letter and y the next received letter,
These are all random variables and, also, x is a
function of m and v. This function, namely, is
the one which defines the encoding procedure with
feedback whereby the next transmitted letter x is
determined by the :e3ssage m and the feedback
information v from the previous received signals.
The channel being memoryless implies that the
next operastion is independent of the past, in
particular, Prly/x] = Prly/x,v].

. . The average change in mutual information,

when a particular v has been received, due to the
x,¥ pair is given by (we are averaging over
messages m and next received letters y, for a
given v):

-1 = Z Prly,m/v]s
y,m

Priv,y,m]
1% Bfv,yIPrin]

Pr|
Log Pr.[[;-‘_L]:];r[m
Since Pr{m/v] = 3 Prly,m/v], the second sum may
Yy

' Priv.m
be rewritten as y:,m Pr(y,n/v] log H—[;E_P.;E;]

The two sums then combine to give

> Eelw/vle

Priv,y,m] Priv

E:Z Pr[y,m/v]logPrvm Prlvey

y.m

Pr] x[v.ml Pr{v]

- .;Z;n Prly.a/v] 1og ZLTT.2)
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The sum on m may be thought of as summed first
on the m's which result in the same x (for the
given v), recalling that x is a function of m
and v, and then summing on the different x's.
the first summation, the term Pr[y/v,m] is
constant at Prly/x] and the coefficient of the
logarithm sums to Prx,y/v]. Thus we cen write

2

X,y

In

Prlx,y/v] log Pr[g; :

Al=
Now consider the rate for the channel (in the
ordinary semse without feedback) if we should
assizn to the x's the probabilities q(x)

= Pr[x/v]. . The probabilities for pairs, r(x,¥),
and for the y's alone, w(y), in this situation
would then be

r(x,7) = q (x) Priy/x]
~P:r[x/v] Pr [y/x]

= Pr [x,y/v]
wiy) = 2 rix,y)
p.4
= Z Pr [x,y/v]
p.4
= Prly/v]
Hence the rate would be
- Prly/x]
R g r(x,y) log =G
- Pr{y/x]
g Prlx,y/v] 1°grPr[y ]
= A I

Since R £ C, the channel capacity (C being the
maximum possible R for all q(x) assignments), we
conclude that

Al £,

Since the average change in I per letter is
not greater than C, the average change in n
letters is not greater than nC. Hence, in a block
code of length n with input rate R, if R > C then
the equivocation at the end of a block will be at
least R - C, just as in the non-feedback case,
In other words, it is not possible to approach
zero equivocation (or, as easily follows, zero
probability of error) at a rate exceeding the
channel capacity. It is, of course, possible to
do this at rates less than C, since certainly
anything that can be done without feedback can
be done with feedback.
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It is interesting that the first sentence

-of Theorem 6 can be generalized readily to chan-
nels with memory provided they are of such a
nature that the internal state of the channel
can be calculated at the transmitting point from
the initial state and the sequence of letters
that have been transmitted. If this is not the
case, the conclusion of the theorem will not
always be true, that is, there exist channels of
a more complex sort for wnich the forward

_ capacity with feedback exceeds that without feed-
back. We shall not, however, give the details of
these generalizations here.

Returning now to the zero-error problem,
we define a zero error capacity 00F for a

channel with feedback in the obvious way--the
least upper bound of rates for block codes with
no errors, The next theorem solves the problem
of evaluating coF for memoryless channels with

feedback, and indicates how rapidly COF may be
approached as the block length n increases,

Theorem 7: In a memoryless discrete
channel with complete feedback of received letteas
to the transmitting point, the zero error
capacity COF is zero if all pasirs of input

-1
Otherwise C° = log Po

letters are adjacent. 7

where
min max § b3

P°=Pi J fx !

J

Pi being a probability assigned to inpﬁt letter
i( > P, =1) and S
1 J

which can cause output letter j with probebility
greater than zero. A zero error block code of
length n can be found for such a feedback
channel which transmits at a rate

R2C L (1 - .21; log, 2t) where t is the number

of input letters.

the set of input letters

The P, occuring in this theorem has the

following meaning, For any given assignment of
probabilities P1 to the input letters omne may

calculate, for each output letter j, the total
probability of all input letters that can (with
positive probability) cause j. This is

2;; Pi' Output letters for which this is

ie j :

large may be thought of as "bad® in that when
received there is a large uncertainty as to the
cause. To obtain P, one adjusts the P; so that
worst output letter in this sense is as good as
possible.

We first show that 4f all letters are
adjecent to each other COF = 0, In fact, in

any coding system, any two messages, say m, and
m, can lead to the same received sequence with
positive probability. Namely, the first trans-
mitted letters corresponding to m, and m, have a

possible received letter in common., Assuming

this occurs, calculate the next transmitted
letters in the coding system for m, and m,. These
also have a possible received letter in common.
Continuing in this manner we establish a

received word which could be produced by elther
my or m, and therefore they camnot be distin-

guished with certainty.

Now consider the case where not all pairse
are adjacent. We will first prove, by induction
on the block length n, that the rate log Py~1
cannot be exceeded with a zero error code. For
n = 0 the result is certainly true. The induc-
tive hypothesis will be that no block code of
length n - 1 transmits at a rate greater than
log P; , or, in other words, can resolve with
certainty more than

-1
(n-1) log Py _ »~(n-1
e 0 = Po( )

different messages. Now suppose (in contradic-
tion to the desired result) we have a block code
of length n resolving M messages with M > PgB,
The first transmitted letter for the code parti-
tions these M messages among the input letters
for the channel. Let Fy be the fraction of the
messages assigned to letter i (that is, for which
i is the first transmitted letter). Now these
F; are like probability assiguments to the
different letters and therefore by definition of
P,, there is some output letter, say letter k,
such that ?‘E’ Fi 2?0. Consider the set of

€

k

messages for which the first transmitted letter

belongs to Sk‘ The number of messages in this

set is at least POM. Any of these can cause

output letter k as first received letter. When
this happens there are n - 1 letters yet to be
transmitted and since M > PgR we have P°M> P'o(n'l),

Thus we have a zero error code of block length
n - 1 transmitting at a rate greater than

log P-l, contradicting the inductive assumption.

Note that the coding function for this code of
length n - 1 is formally defined from the
origimml coding function by fixing the first
received letter at k.

We must now show that the rate log P;l can

actually be approached as closely as desired with
zero error codes. Let P1 be the set of probabili~

ties which, when assigned to the input letters,
give P for min max P,. The general
0 P 3 ; i
i €

J
gcheme of the code will be to divide the M
original messages into t different groups
corresponding to the first transmitted letter.
The number of messages in these groups will be
approximately proportional to P_, Pz,... Pt'

The first transmitted letter, then, will cor-
respond to the group containing the message to

be transmitted. Whatever letter is received, the
number of possible messages compatible with this
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received letter will be approximately POM. This

subset of possible messages is known both at the
receiver and (after the received letter is sent
back to the transmitter) at the transmitting
point.

The code system next subdivides this sub-
get of messages into t groups, agaln approximate~
1y in proportion to the probabilities Pi' The

second letter transmitted is that corresponding
to the group containing the actual message.
Whatever letter is received, the number of mes-
sages compatible with the two received letters is
now, roughly, P2M,

This process is continued until only a few
messages (less than t2) are compatidle with all
the received letters, The ambiguity among these
is then resolved by using a pair of non-adjacent
letters in a simple binary code, The code thus
constructed will be a zero error code for the
channel,

Our first concern is to estimate carefully
the approximation involved in subdividing the
meseages into the t groups. We will show that
for any M and any set of P1 ZP1=1, it is

possible to subdivide the M messages into groups

of m M, .. 0, such that m =0 whenever Pi = 0
and
n
— <1l =
’ M - Pi'\ m i=1,...,%

We asgsume without loss of generality that

1-"1,1’2,...Ps are the non-vanishing Pi' Choose my
to be the largest integer such that _f-_]_._ é.Pl.

Let P, = s Clearly [8J&1 MNext choose
1 M 1 S M

m, to be the smallest integer such

2
n
2 _ 1

and let P2 -N -32. We have '62'6 ¥ Also

'51+8

m
that 2, P,

1
2,s M' since 61 and 82 are opposite in
sign and each less than ;1(' in absolute value.

Next, m3 is chosen so that f} approximates, to
M

; N
within M to P3.

chosen less than or equal to

If 8, +8,%0, thencé;} is
Py It 1 = 8,0,
then 5_ is chosen greater than or equal to P3.
M
Thus again P, - %3 =§ .- and
375 O3V M

'61 + 62 + 63,$—l}r. Continuing in this manner
through Ps-l we obtain approximationsfor

PP P

By FpeeenBogy with the property that

' 81 + 52 +_,,+ISS_1 K—-}]&—, or

18

P, +...+P

|u @ +E, a-1)

- (ml tm, toLt ms_l)'s 1. If we now define
g-1

m, ags M - z mg then this inequality can be

1
written ,M(l - Ps) - (M- ma) , € 1. Hence

S
, Ps - P ,\< "17 Thus we have achieved the
Tl

—i'to

objective of keeping all approximation M

within -‘li of 1’i and having Z m = M,

Returning now to our main problem note
first that if Po = 1 then coF = 0 and the
theorem is trivially true. We assume, then, that
P, <1. Ve wish to show that P, & (1 - 3).
Consider the set of input 2letters which have

the maximum value of Pi' This maximum is

certalinly greater than or equal to the average
%. Furthermore, we can arrange t¢ have at least

one of these input letters not connected to some
output letter. For suppose this is not the case.
Then either there are no other input letters
beside this set and we contradict the assumption
that P°<1, or there are other input letters

with smaller values of Pi' In this case, by
reducing the Pi for one input letter in the

maximum set and increasing correspondingly that
for some input letter which does not conneet to
all output letters, we do not increase the value
of P (for any Sj) and create an input letter of

the desired type. By consideration of an output
letter to which this input letter does not
connect we see that Po <t -%_

Now suppose we start with M messages and
subdivide into groups approximating proportion-
ality to the Pi as described above. Then when a

letter has been recelved, the set of possible
messages (compatible with this received letter)
will be reduced to those in the groups correspond-
ing to letters which comnect to the actual
received letter. Xach output letter connects to
not more than t - 1 input letters (otherwise we
would have Py = 1). For each of the comnnecting
groups, the error in approximating P; has been
less than or equal to _%(... Hence the total

relative number in all connecting groups for any
output letter is less than or equal to P, + .t_.}:d'._l-.

The total number of possible messages after
receiving the first letter consequently drops
from M to a number less than or equal to PoM +t-l,

In the coding system to be used, this
rengining possible subset of messages is sub-~
divided again emong the input letters to
approximate in the same fashion the probabilities
Py. This subdivision can be carried out both at
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receiving point and transmitting point using the
same standard procedure (say, exactly the one
described above) since with the feedback both
terminals have available the required data,
namely the first received letter.

- The second transmitted letter obtained by
this procedure will again reduce at the receiving
point the number of possible messages to a value
not greater than Py (PoM + t - 1) + ¢ ~ 1, This
same process continues with each transmitted
letter. If the upper bound on the number of
possible remaining messages after k letters is
Mk, then Mk +1° POMk + %t - 1. The solution of

this difference equation is

APk s 3=l

(] 1l - Po

Mk =

This may be readily verified by substitution in
the difference equation. To satisfy the initial

conditions M_ = M requires A = M - E_:_% . Thus
1 -
o
the solution becomes
_ t -1 $ -1
M1:“(“'1-?0)1’]:: *17F,
k t -1 k
= MP, + 1-p
° 1 - P, o )
< MPS+ ¢ (t-1)
- o]
since we have seen above that 1 - Poz%.

If the process described is carried out
for ny steps, where n1 is the smallest integer

2 d where d is the sclution of MPOd = 1, then the

number of possible messages left consistent with
the received sequence will be not greater than

1+t (¢ -1)<t? (since t>1, otherwise we
should have C o = 0). Now the pair of non-

adjacent letters assumed in the theorem may be
used to resolve the ambiguity among these

t~ or less messages. This will require not more
than 1 + log,t? =1og,2t2 additional letters.

Thus, in total, we have used not more than
d+1+ log22t2 =4+ 1og2ut2 =
length.

n say as block
We have transmitted in this block
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length a choice from M = P;d mesdages. Thus the

zero error rate we have achieved is

-1
M? d log Po

1
R == 1log ————
n 4+ 103241:2

1 2 -1
(1 - log 44°) log A

1

= (1 - I log btz) CoF

Thus we can approximate to C,p as closely as

desired with zero error codes.

As an example of Theorem 7 consider the
channel in Fig. 5. We wish to evaluate P,. It

is easily seen that we may take Pi = P2 = P3 in
forming the min max of Theorem 7, for if they are
unequal the maximum JF__ 1’i for the correspond-
ieS,
J
ing three output letters would be reduced by

equalizing, Also it is evident, then, that

Pb = Pl + Pz. since otherwise & shift of

probability one way or the other would reduce the
meximum. We conclude, then, that Pi = P2 = P3

=1/5 and B, = 2/5. TFinally, the zero error

capacity with feedback is log P;l = log 5/2.
There is a close connection between the
min max process of Theorem 7 and the process of
finding the minimum cepacity for the channel
under variation of the non-vanishing transition
probabilities pi(j) as in Theorem 2. It was

noted there that at the minimum capacity each
output letter can be caused by the same total
probability of input letters. Indeed, it seems
very likely that the probabilities of input
letters to attain the minimum capacity are
exactly those which solve the min max problem of
Theorem 7, and, if this is so, the Cmin = log P; .
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