Dubins Paths for Waveguide
Routing

by Quentin Wach ¢ 26 min read * Feb 15, 2024

What does the perfect waveguide routing look like? Traditional waveguide interconnects lack
efficiency and optimization, leading to suboptimal photonic integrated circuits (PICs). Addressing
key concerns like minimizing internal and radiation losses, reducing cross-talk, and avoiding
unnecessary crossings, | explored the concept of finding the shortest path between two points in a
PIC given a minimum bending radius. Dubins paths, already well known in robotics and control
theory, emerged as a simple and highly practical solution.

photonic integrated circuits design automation robotics gds

1 Introduction

I'll try to keep this short and not ramble too much. | just want to get this out there since |
found it rather useful and can’t believe it isn’t yet standard.

When | started my work on layouts for photonic integrated circuit in September 2023, it
became quickly obvious that the typical waveguide interconnects provided by libraries are
not well behaved nor optimal as to improve the performance and compactness of the
photonic integrated circuit. Most commonly, we have simple straights, circular arcs, all sorts
of splines, as well as Euler-bends, in short: They are all simple analytical functions or splines
that (try to) optimize themselves. All of these are either simple building blocks that leave
most of the work to the designer who has to plan out and specify every route, or behave
extremely poorly and lead to overly bendy results that may even cross each other.

So in my first two weeks there, | was thinking about what we have to consider. Waveguides
have to fullfil multiple criteria. They need to be...

® As short as possible as to minimize internal losses.
® As straight and continuos as possible as to minimize radiation losses.
® As far away from other waveguides and structures as to minimize cross-talk.

® Does not cross other waveguides unless close to a 90° angle if absolutely necessary.

It became quickly obvious that trying to find an optimum for all these design parameters is
impossible unless we either weigh their importance using a complicated metric we have to
justify, or make much harder constraints. Since it is common to have a fixed minimum
bending radius for waveguides, it makes sense to translate this here. | then boiled all of the
considerations down to the single, | believe, most important question: “What is the
shortest path between the pin or vector a and pin or vector b given a
minimum bending radius?”

As it turns out, the answer is rather simple and long established in the field of robotics /
control theory. Dubins paths!

2 What are they?

Dubins paths are named after Lester Dubins, who introduced them in the 1950s". They
refer to the shortest paths that a vehicle can take from one point to another while
constrained to move at a specific minimum turning radius. These paths are thus commonly
studied in the field of motion planning for vehicles, particularly in robotics and aerospace
engineering.

These paths simply connect
circular arcs with straights L S
which leaves us with a couple ' '
of characteristic Dubins
paths:

® LRL (Left-Right-Left)

* RLR (Right-Left-Right)

® LSL (Left-Straight-Left)

® RSR (Right-Straight-Right)
® LSR (Left-Straight-Right)
® RSL (Right-Straight-Left)

You can see three examples

of the possible paths in the 1 R RSR

figure | adapted here?. \ o

3 Geometric

Construction

Dubins did indeed prove that these trajectories are the shortest paths mathematically. The
geometric construction is quite intuitive and a nice toy problem to figure out on ones own

but it can quickly explode into multiple pages of pen and paper calculations and diagrams
which is why | am not going to go into it here. Instead, | refer to a great overview and

explanation of the synthesis of Dubins paths given by David A. Anisi®. A wonderful and in-
depth guide is also given by Andy G,

4 Code

Let's go through some code to generate them, though. There is an abundance of

implementations of Dubins paths available on the internet®. What | present here is a hacked
together version. First, it's useful to define a little helper to keep all the angles within the
range of [0, 27):

import math as m

normalizes an angle to the range [0, 2*pi)
def mod_to_pi(angle):
return angle - 2.0*m.pi*m.floor(angle/2.0/m.pi)

Next, we actually find our Dubins paths using a planner function general_planner()
which creates and compares the lengths of all six possible routes using
dubins_path_length() . The data of the solution is then returned with dubins_path() .

import nazca as nd
from nazca.interconnects import Interconnect

Function to find the optimal Dubins path between two points

def general_planner(planner, alpha, beta, d):
Calculates the Dubins path between two points defined by their
angles and distance given a plan.

Parameters:
planner (str): Type of Dubins path. Can be one of 'LSL', 'RSR',
"LSR', 'RSL', 'RLR', or 'LRL'.
alpha (float): Starting orientation angle in radians.
beta (float): Ending orientation angle in radians.
d (float): Distance between the two points.

Returns:
tuple or None: A tuple containing the Dubins path as a list of
angles and distances, the mode of the planner,
and the cost of the path.
Returns None if the path is not feasible.

Convert angles to sine and cosine
sa = m.sin(alpha)

sb = m.sin(beta)

ca = m.cos(alpha)

cb = m.cos(beta)

c_ab = m.cos(alpha - beta)

Convert planner input to uppercase
planner_uc = planner.upper()

Case LSL Dubins path
if planner_uc == 'LSL':
Calculate intermediate values for LSL path
tmp® = d + sa - sb
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb))
if p squared < @: # Path not feasible
return None
tmpl = m.atan2((cb - ca), tmpo)
t = mod_to_pi(-alpha + tmpl)
p
q

m.sqrt(p_squared)
mod_to_pi(beta - tmpl)

Case RSR Dubins path (similar structure to LSL)
elif planner_uc == 'RSR':

Calculate intermediate values for RSR path
tmp® = d - sa + sb
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa))
if p_squared < @: # Path not feasible
return None
tmpl = m.atan2((ca - cb), tmpo)

t = mod_to_pi(alpha - tmpl)
p = m.sqrt(p_squared)
g = mod_to_pi(-beta + tmpl)

Case LSR Dubins path (similar structure to LSL)
elif planner_uc == 'LSR':
Calculate intermediate values for LSR path
p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb))
if p_squared < @: # Path not feasible
return None
p = m.sqrt(p_squared)
tmp2 = m.atan2((-ca - cb), (d + sa + sb)) - m.atan2(-2.9, p)
t = mod_to_pi(-alpha + tmp2)
g = mod_to_pi(-mod_to_pi(beta) + tmp2)

Case RSL Dubins path (similar structure to LSR)
elif planner_uc == 'RSL':
Calculate intermediate values for RSL path
p_squared = (d *d) - 2 + (2 * c_ab) - (2 * d * (sa + sb))
if p_squared < @: # Path not feasible
return None
p = m.sqrt(p_squared)
tmp2 = m.atan2((ca + cb), (d - sa - sb)) - m.atan2(2.0, p)
t

q

mod_to_pi(alpha - tmp2)
mod_to_pi(beta - tmp2)

Case RLR Dubins path (similar structure to LSL)

elif planner_uc == 'RLR':
Calculate intermediate values for RLR path
tmp_rlr = (6.0 - d *d+ 2.0 * ccab+ 2.0 *d * (sa - sb)) / 8.0
if abs(tmp_rlr) > 1.0: # Path not feasible

return None

mod_to_pi(2 * m.pi - m.acos(tmp_rlr))

+ T
]]

mod_to_pi(alpha - m.atan2(ca - cb, d - sa + sb) + mod_to_pi(p / 2.
mod_to_pi(alpha - beta - t + mod_to_pi(p))

Case LRL Dubins path (similar structure to RLR)
elif planner_uc == 'LRL':
Calculate intermediate values for LRL path
tmp_1rl = (6. - d *d+ 2 * cab+ 2 *d * (- sa+ sb)) / 8.

if abs(tmp_lrl) > 1: # Path not feasible
return None

p = mod_to_pi(2 * m.pi - m.acos(tmp_1rl))
t = mod_to_pi(-alpha - m.atan2(ca - cb, d + sa - sb) + p / 2.)
= mod_to_pi(mod_to_pi(beta) - alpha - t + mod_to_pi(p))
else:

print("The given plan ", planner, is false.") # Invalid planner 1inp
Create the Dubins path as a List of angles and distances

path = [t, p, q]

Adjust angles 1if planner segments are lowercase (for reverse motion)
for i in [0, 2]:
if planner[i].islower():
path[i] = (2 * m.pi) - path[i]

Calculate the cost of the path (sum of absolute values of angles and dis
cost = sum(map(abs, path))

return (path, mode, cost)

Function to calculate the lLength of a Dubins path
def dubins_path_length(start, end, radius):
Unpack start and end configurations
(sx, sy, syaw)
(ex, ey, eyaw)

start

end

Convert angles to radians

syaw = m.radians(syaw)

eyaw = m.radians(eyaw)
Define the turning radius
C = radius

Calculate differences in coordinates
ex = ex - sX

ey = ey - sy

Project end point onto start orientation
lex = m.cos(syaw) * ex + m.sin(syaw) * ey
ley =

m.sin(syaw) * ex + m.cos(syaw) * ey

leyaw = eyaw - syaw

Calculate the total distance
D = m.sqrt(lex ** 2.0 + ley ** 2.0)

return D

Finds the Dubins path between two points
def dubins_path(start, end, radius):

Calculate the Llength
dubins_path_length(start, end, radius)

Q O
]]

D / radius

Define important angles
theta
alpha

mod_to_pi(m.atan2(ley, lex))
mod_to_pi(- theta)
beta = mod_to_pi(leyaw - theta)

Iterate through all possible paths

planners = ['LSL', 'RSR', 'LSR', 'RSL', 'RLR', 'LRL']
bcost = float("inf")

bt, bp, bg, bmode = None, None, None, None

for planner in planners:

find the solution for the Dubins path
solution = general_planner(planner, alpha, beta, d)

if solution is None:

continue

Collect the data from the solution
(path, mode, cost) = solution
(t, p, q) = path
if bcost > cost:
Best cost
bt, bp, bg, bmode = t, p, q, mode
bcost = cost

return (list(zip(bmode, [bt*c, bp*c, bg*c], [c] * 3)))

It's more difficult to then actually create the final curve but the gds_solution() function

can easily be extended to draw Dubins paths with Matplotlib--é, too, for example. We can
wrap it all up into a single, simple to use function just like any other provided by the design

library you might be using. In this case, | have been using the Nazca IibraryZ which comes
with several interconnects, including straights and circular arcs which are used often but
very tedious and slow to work with alone. Using dubin_p2p() as shown below, we can
simply define the start pin, the end pin, and our code will route a Dubins path between
them using the straights and circular arcs provided by Nazca. Of course, this can be easily

adapted to other tools like GDSFactory--a.

Generate a Nazca cell for a given Dubins path solution
def gds_solution(xs, pinl, pin2, solution):
Analogously to plotSolution() we draw the trajectory of a
given solution for a Dubins path between
two points, here, the pins, to be rendered in .gds!
Get the pin vectors from nazca pinl and pin2
start = pinl.xya()
end = pin2.xya()

Change the angle for the second pin
new_end = list(end)

new_end[2] = new_end[2] - 180

end = tuple(new_end)

Define the xs for the .gds file
ic = Interconnect(xs=xs)

Create the cell object for the path
with nd.Cell("dubins-path") as C:

Define important points
radius = solution[@][2]
current_position = start
(sx, sy, syaw) = start
(ex, ey, eyaw) = end

ex = ex - sX

ey = ey - sy

Draw the S, L, or R elements from the solution
for (mode, length, radius) in solution:

if mode == 'L':
Find the center of the circle
center = (

current_position[9]
+ m.cos(m.radians(current_position[2] + 90)) * radius,

current_position[1]
+ m.sin(m.radians(current_position[2] + 90)) * radius,

)
new_position = (
center[0] + m.cos(m.radians(current_position[2]
- 90 + (180 * length / (m.pi * radius)))) * radius,

center[1] + m.sin(m.radians(current_position[2]

- 90 + (180 * length / (m.pi * radius)))) * radius,

current_position[2] + (180 * length / (m.pi * radius))

)
arc_angle = (180 * length / (m.pi * radius))

ic.bend(radius=radius, angle=arc_angle).put()
elif mode == 'R':

center = (
current_position[9]
+ m.cos(m.radians(current_position[2] - 90)) * radius,

current_position[1]

+ m.sin(m.radians(current_position[2] - 99)) * radius,
)
new_position = (

center[0] + m.cos(m.radians(current_position[2]

+ 90 - (180 * length / (m.pi * radius)))) * radius,

center[1] + m.sin(m.radians(current position[2]
+ 90 - (180 * length / (m.pi * radius)))) * radius,

current_position[2] - (180 * length / (m.pi * radius))

)
arc_angle = - (180 * length / (m.pi * radius))

ic.bend(radius=radius, angle=arc_angle).put()
elif mode == 'S':
new_position = (
current_position[9]
+ m.cos(m.radians(current_position[2])) * length,

current_position[1]
+ m.sin(m.radians(current_position[2])) * length,

current_position[2],

)

x1 = current_position[0] - new_position[9]
yl = current_position[1] - new_position[1]
1 = m.sqrt(x1**2 + yl**2)

ic.strt(length=1).put()

else:
print("Something ain't right, buddy.")

current_position = new_position
return C

B e e e e e L e e e e e
Use this when designing your PIC with Nazca!
B L L L o L e e e

Create Dubins path between two pins in Nazca

def dubin_p2p(xs, pinl, pin2, radius=500, width=4):
Finds and creates the shortest possible path between two vectors
(pinl and pin2) with a minimum bending radius,
a so called "Dubins path". This Dubins path is made of two
circular bends and a straight waveguide.
Returns a cell containing these waveguides.

IMPORTANT

In this version, you NEED to specify to put the path at the starting
pin so if pinl=I0.pin["a@"] you must add .put(IO.pin["a@"]).

Else, the Dubins path will be generated correctly

but possibly at the wrong position.

PARAMETERS

XS: Crosssection parameters.

pinl: The start pin to which the Dubins path attaches.
pin2: The end pin to where the Dubins path ends.
radius: The minimum bending radius for the Dubins paths.
width: The width of the waveguides dubin_p2p creates.
Get the pin vectors from pinl and pin2

START = pinl.xya()

END = pin2.xya()

Change the angle for the second pin
new_end = list(END)

new_end[2] = new_end[2] - 180

END = tuple(new_end)

Find the Dubins path between pinl and pin2
path = dubins_path(start=START, end=END, radius=radius)

Create the Dubins path with nazca using bends and straights
return gds_solution(xs, pinl, pin2, solution=path)

5 Conclusion

In the figure below, a comparison between a dense array of Dubins paths and arrays using
Nazcas s-bends and cobra splines is made:

As one can see, not only do other interconnects lead to over-bending of the waveguides
and thus a longer path and greater losses, they are also less reliable, predictable, often
break the design rules to not violate the minimum bending radius as is indeed
the case here. They even intersect each other! Meanwhile, the Dubins paths behave
extremely predictably. They clearly show the shortest path without unnecessary bends and
they do not intersect each other which allows for much denser layouts than would be
possible with the other interconnects.

There is a list of improvements one may make based on this. For one, the curvature of
Dubins paths are not smooth which may lead to higher radiation losses. Still, the hours of
headaches | personally avoided just by using Dubins paths are insane. It is also simply much
more enjoyable to use.

That’s my little tip for those working on photonic integrated circuit layouts. | hope it helps!
Citing
If so, you can cite:
@article{QWachDubin2024,
author = {Quentin Wach},

title = {Dubins Paths for Waveguide Routing},
year = {2024}

References

1. Dubins, L. E., “On_Curves of Minimal Length with a Constraint on Average Curvature, and
with__Prescribed _Initial _and _Terminal _Positions and Tangents”. American_Journal of

https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://en.wikipedia.org/wiki/Dubins_path

2. Wikipedia: Dubins Paths (Accessed: Feb 20, 2024) €

4. Andy G, "A Comprehensive Step by Step. Tutorial to Computing Dubins Paths” <

5. Atsushi _Sakai, “Python. Robotics: Dubins. Path. Planning”, GitHub. (Accessed: Feb. 20,
2024) €

6.)...D. Hunter, “Matplotlib:. A. 2D . Graphics. Environment”, Computing. .in. Science &
Engineering, vol. 9, no. 3, pp..90-95, 2007, <

8. GDSFactory, GitHub <

https://en.wikipedia.org/wiki/Dubins_path
https://people.kth.se/~anisi/articles/foi-r-0961-se.pdf
https://people.kth.se/~anisi/articles/foi-r-0961-se.pdf
https://people.kth.se/~anisi/articles/foi-r-0961-se.pdf
https://gieseanw.wordpress.com/2012/10/21/a-comprehensive-step-by-step-tutorial-to-computing-dubins-paths/
https://gieseanw.wordpress.com/2012/10/21/a-comprehensive-step-by-step-tutorial-to-computing-dubins-paths/
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://nazca-design.org/
https://github.com/gdsfactory/gdsfactory

