
Dubins Paths for Waveguide
Routing
by Quentin Wach • 26 min read • Feb 15, 2024

What does the perfect waveguide routing look like? Traditional waveguide interconnects lack
efficiency and optimization, leading to suboptimal photonic integrated circuits (PICs). Addressing
key concerns like minimizing internal and radiation losses, reducing cross-talk, and avoiding
unnecessary crossings, I explored the concept of finding the shortest path between two points in a
PIC given a minimum bending radius. Dubins paths, already well known in robotics and control
theory, emerged as a simple and highly practical solution.

photonic integrated circuits design automation robotics gds

1 Introduction
I’ll try to keep this short and not ramble too much. I just want to get this out there since I
found it rather useful and can’t believe it isn’t yet standard.

When I started my work on layouts for photonic integrated circuit in September 2023, it
became quickly obvious that the typical waveguide interconnects provided by libraries are
not well behaved nor optimal as to improve the performance and compactness of the
photonic integrated circuit. Most commonly, we have simple straights, circular arcs, all sorts
of splines, as well as Euler-bends, in short: They are all simple analytical functions or splines
that (try to) optimize themselves. All of these are either simple building blocks that leave
most of the work to the designer who has to plan out and specify every route, or behave
extremely poorly and lead to overly bendy results that may even cross each other.

So in my first two weeks there, I was thinking about what we have to consider. Waveguides
have to fullfil multiple criteria. They need to be…

As short as possible as to minimize internal losses.

As straight and continuos as possible as to minimize radiation losses.

As far away from other waveguides and structures as to minimize cross-talk.

Does not cross other waveguides unless close to a 90° angle if absolutely necessary.

It became quickly obvious that trying to find an optimum for all these design parameters is
impossible unless we either weigh their importance using a complicated metric we have to
justify, or make much harder constraints. Since it is common to have a fixed minimum
bending radius for waveguides, it makes sense to translate this here. I then boiled all of the
considerations down to the single, I believe, most important question: “What is the

shortest path between the pin or vector and pin or vector given a
minimum bending radius?”

As it turns out, the answer is rather simple and long established in the field of robotics /
control theory. Dubins paths!

→a →b

2 What are they?

Dubins paths are named after Lester Dubins, who introduced them in the 1950s1. They
refer to the shortest paths that a vehicle can take from one point to another while
constrained to move at a specific minimum turning radius. These paths are thus commonly
studied in the field of motion planning for vehicles, particularly in robotics and aerospace
engineering.

These paths simply connect
circular arcs with straights
which leaves us with a couple
of characteristic Dubins
paths:

LRL (Left-Right-Left)

RLR (Right-Left-Right)

LSL (Left-Straight-Left)

RSR (Right-Straight-Right)

LSR (Left-Straight-Right)

RSL (Right-Straight-Left)

You can see three examples
of the possible paths in the

figure I adapted here2.

3 Geometric
Construction
Dubins did indeed prove that these trajectories are the shortest paths mathematically. The
geometric construction is quite intuitive and a nice toy problem to figure out on ones own
but it can quickly explode into multiple pages of pen and paper calculations and diagrams
which is why I am not going to go into it here. Instead, I refer to a great overview and

explanation of the synthesis of Dubins paths given by David A. Anisi3. A wonderful and in-

depth guide is also given by Andy G4.

4 Code
Let’s go through some code to generate them, though. There is an abundance of

implementations of Dubins paths available on the internet5. What I present here is a hacked
together version. First, it’s useful to define a little helper to keep all the angles within the
range of :

import math as m

normalizes an angle to the range [0, 2*pi)
def mod_to_pi(angle):
 return angle - 2.0*m.pi*m.floor(angle/2.0/m.pi)

Next, we actually find our Dubins paths using a planner function general_planner()
which creates and compares the lengths of all six possible routes using
dubins_path_length() . The data of the solution is then returned with dubins_path() .

[0, 2π)

import nazca as nd
from nazca.interconnects import Interconnect

Function to find the optimal Dubins path between two points
def general_planner(planner, alpha, beta, d):
 """
 Calculates the Dubins path between two points defined by their
 angles and distance given a plan.

 Parameters:
 planner (str): Type of Dubins path. Can be one of 'LSL', 'RSR',
 'LSR', 'RSL', 'RLR', or 'LRL'.
 alpha (float): Starting orientation angle in radians.
 beta (float): Ending orientation angle in radians.
 d (float): Distance between the two points.

 Returns:
 tuple or None: A tuple containing the Dubins path as a list of
 angles and distances, the mode of the planner,
 and the cost of the path.
 Returns None if the path is not feasible.
 """

 # Convert angles to sine and cosine
 sa = m.sin(alpha)
 sb = m.sin(beta)
 ca = m.cos(alpha)
 cb = m.cos(beta)
 c_ab = m.cos(alpha - beta)
 # Convert planner input to uppercase
 planner_uc = planner.upper()

 # Case LSL Dubins path
 if planner_uc == 'LSL':
 # Calculate intermediate values for LSL path
 tmp0 = d + sa - sb
 p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb))
 if p_squared < 0: # Path not feasible
 return None
 tmp1 = m.atan2((cb - ca), tmp0)
 t = mod_to_pi(-alpha + tmp1)
 p = m.sqrt(p_squared)
 q = mod_to_pi(beta - tmp1)

 # Case RSR Dubins path (similar structure to LSL)
 elif planner_uc == 'RSR':

 # Calculate intermediate values for RSR path
 tmp0 = d - sa + sb
 p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa))
 if p_squared < 0: # Path not feasible
 return None
 tmp1 = m.atan2((ca - cb), tmp0)
 t = mod_to_pi(alpha - tmp1)
 p = m.sqrt(p_squared)
 q = mod_to_pi(-beta + tmp1)

 # Case LSR Dubins path (similar structure to LSL)
 elif planner_uc == 'LSR':
 # Calculate intermediate values for LSR path
 p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb))
 if p_squared < 0: # Path not feasible
 return None
 p = m.sqrt(p_squared)
 tmp2 = m.atan2((-ca - cb), (d + sa + sb)) - m.atan2(-2.0, p)
 t = mod_to_pi(-alpha + tmp2)
 q = mod_to_pi(-mod_to_pi(beta) + tmp2)

 # Case RSL Dubins path (similar structure to LSR)
 elif planner_uc == 'RSL':
 # Calculate intermediate values for RSL path
 p_squared = (d * d) - 2 + (2 * c_ab) - (2 * d * (sa + sb))
 if p_squared < 0: # Path not feasible
 return None
 p = m.sqrt(p_squared)
 tmp2 = m.atan2((ca + cb), (d - sa - sb)) - m.atan2(2.0, p)
 t = mod_to_pi(alpha - tmp2)
 q = mod_to_pi(beta - tmp2)

 # Case RLR Dubins path (similar structure to LSL)
 elif planner_uc == 'RLR':
 # Calculate intermediate values for RLR path
 tmp_rlr = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (sa - sb)) / 8.0
 if abs(tmp_rlr) > 1.0: # Path not feasible
 return None
 p = mod_to_pi(2 * m.pi - m.acos(tmp_rlr))
 t = mod_to_pi(alpha - m.atan2(ca - cb, d - sa + sb) + mod_to_pi(p / 2.0
 q = mod_to_pi(alpha - beta - t + mod_to_pi(p))

 # Case LRL Dubins path (similar structure to RLR)
 elif planner_uc == 'LRL':
 # Calculate intermediate values for LRL path
 tmp_lrl = (6. - d * d + 2 * c_ab + 2 * d * (- sa + sb)) / 8.

 if abs(tmp_lrl) > 1: # Path not feasible
 return None
 p = mod_to_pi(2 * m.pi - m.acos(tmp_lrl))
 t = mod_to_pi(-alpha - m.atan2(ca - cb, d + sa - sb) + p / 2.)
 q = mod_to_pi(mod_to_pi(beta) - alpha - t + mod_to_pi(p))

 else:
 print("The given plan ", planner, " is false.") # Invalid planner inpu

 # Create the Dubins path as a list of angles and distances
 path = [t, p, q]

 # Adjust angles if planner segments are lowercase (for reverse motion)
 for i in [0, 2]:
 if planner[i].islower():
 path[i] = (2 * m.pi) - path[i]

 # Calculate the cost of the path (sum of absolute values of angles and dist
 cost = sum(map(abs, path))

 return (path, mode, cost)

Function to calculate the length of a Dubins path
def dubins_path_length(start, end, radius):
 # Unpack start and end configurations
 (sx, sy, syaw) = start
 (ex, ey, eyaw) = end

 # Convert angles to radians
 syaw = m.radians(syaw)
 eyaw = m.radians(eyaw)

 # Define the turning radius
 c = radius

 # Calculate differences in coordinates
 ex = ex - sx
 ey = ey - sy

 # Project end point onto start orientation
 lex = m.cos(syaw) * ex + m.sin(syaw) * ey
 ley = - m.sin(syaw) * ex + m.cos(syaw) * ey
 leyaw = eyaw - syaw

 # Calculate the total distance
 D = m.sqrt(lex ** 2.0 + ley ** 2.0)

 return D

Finds the Dubins path between two points
def dubins_path(start, end, radius):

 # Calculate the length
 D = dubins_path_length(start, end, radius)
 d = D / radius

 # Define important angles
 theta = mod_to_pi(m.atan2(ley, lex))
 alpha = mod_to_pi(- theta)
 beta = mod_to_pi(leyaw - theta)

 # Iterate through all possible paths
 planners = ['LSL', 'RSR', 'LSR', 'RSL', 'RLR', 'LRL']
 bcost = float("inf")
 bt, bp, bq, bmode = None, None, None, None
 for planner in planners:

 # find the solution for the Dubins path
 solution = general_planner(planner, alpha, beta, d)

 if solution is None:
 continue

 # Collect the data from the solution
 (path, mode, cost) = solution
 (t, p, q) = path
 if bcost > cost:
 # Best cost
 bt, bp, bq, bmode = t, p, q, mode
 bcost = cost

 return (list(zip(bmode, [bt*c, bp*c, bq*c], [c] * 3)))

It’s more difficult to then actually create the final curve but the gds_solution() function

can easily be extended to draw Dubins paths with Matplotlib6, too, for example. We can
wrap it all up into a single, simple to use function just like any other provided by the design

library you might be using. In this case, I have been using the Nazca library7 which comes
with several interconnects, including straights and circular arcs which are used often but
very tedious and slow to work with alone. Using dubin_p2p() as shown below, we can
simply define the start pin, the end pin, and our code will route a Dubins path between
them using the straights and circular arcs provided by Nazca. Of course, this can be easily

adapted to other tools like GDSFactory8.

Generate a Nazca cell for a given Dubins path solution
def gds_solution(xs, pin1, pin2, solution):
 """
 Analogously to plotSolution() we draw the trajectory of a
 given solution for a Dubins path between
 two points, here, the pins, to be rendered in .gds!
 """
 # Get the pin vectors from nazca pin1 and pin2
 start = pin1.xya()
 end = pin2.xya()

 # Change the angle for the second pin
 new_end = list(end)
 new_end[2] = new_end[2] - 180
 end = tuple(new_end)

 # Define the xs for the .gds file
 ic = Interconnect(xs=xs)

 # Create the cell object for the path
 with nd.Cell("dubins-path") as C:

 # Define important points
 radius = solution[0][2]
 current_position = start
 (sx, sy, syaw) = start
 (ex, ey, eyaw) = end
 ex = ex - sx
 ey = ey - sy

 # Draw the S, L, or R elements from the solution
 for (mode, length, radius) in solution:
 if mode == 'L':
 # Find the center of the circle
 center = (
 current_position[0]
 + m.cos(m.radians(current_position[2] + 90)) * radius,

 current_position[1]
 + m.sin(m.radians(current_position[2] + 90)) * radius,
)
 new_position = (
 center[0] + m.cos(m.radians(current_position[2]
 - 90 + (180 * length / (m.pi * radius)))) * radius,

 center[1] + m.sin(m.radians(current_position[2]

 - 90 + (180 * length / (m.pi * radius)))) * radius,

 current_position[2] + (180 * length / (m.pi * radius))
)
 arc_angle = (180 * length / (m.pi * radius))
 # Change this line if you want to use the function
 # in, for example, Matplotlib
 ic.bend(radius=radius, angle=arc_angle).put()
 elif mode == 'R':
 # Find the center of the circle
 center = (
 current_position[0]
 + m.cos(m.radians(current_position[2] - 90)) * radius,

 current_position[1]
 + m.sin(m.radians(current_position[2] - 90)) * radius,
)
 new_position = (
 center[0] + m.cos(m.radians(current_position[2]
 + 90 - (180 * length / (m.pi * radius)))) * radius,

 center[1] + m.sin(m.radians(current_position[2]
 + 90 - (180 * length / (m.pi * radius)))) * radius,

 current_position[2] - (180 * length / (m.pi * radius))
)
 arc_angle = - (180 * length / (m.pi * radius))
 # Change this line if you want to use the function
 # in, for example, Matplotlib
 ic.bend(radius=radius, angle=arc_angle).put()
 elif mode == 'S':
 new_position = (
 current_position[0]
 + m.cos(m.radians(current_position[2])) * length,

 current_position[1]
 + m.sin(m.radians(current_position[2])) * length,

 current_position[2],
)
 xl = current_position[0] - new_position[0]
 yl = current_position[1] - new_position[1]
 l = m.sqrt(xl**2 + yl**2)
 # Change this line if you want to use the function
 # in, for example, Matplotlib
 ic.strt(length=l).put()

 else:
 print("Something ain't right, buddy.")

 current_position = new_position
 return C

###
Use this when designing your PIC with Nazca!
###

Create Dubins path between two pins in Nazca
def dubin_p2p(xs, pin1, pin2, radius=500, width=4):
 """
 Finds and creates the shortest possible path between two vectors
 (pin1 and pin2) with a minimum bending radius,
 a so called "Dubins path". This Dubins path is made of two
 circular bends and a straight waveguide.
 Returns a cell containing these waveguides.

 IMPORTANT
 =========
 In this version, you NEED to specify to put the path at the starting
 pin so if pin1=IO.pin["a0"] you must add .put(IO.pin["a0"]).
 Else, the Dubins path will be generated correctly
 but possibly at the wrong position.

 PARAMETERS
 ==========
 xs: Crosssection parameters.
 pin1: The start pin to which the Dubins path attaches.
 pin2: The end pin to where the Dubins path ends.
 radius: The minimum bending radius for the Dubins paths.
 width: The width of the waveguides dubin_p2p creates.
 """
 # Get the pin vectors from pin1 and pin2
 START = pin1.xya()
 END = pin2.xya()

 # Change the angle for the second pin
 new_end = list(END)
 new_end[2] = new_end[2] - 180
 END = tuple(new_end)

 # Find the Dubins path between pin1 and pin2
 path = dubins_path(start=START, end=END, radius=radius)

 # Create the Dubins path with nazca using bends and straights
 return gds_solution(xs, pin1, pin2, solution=path)

5 Conclusion
In the figure below, a comparison between a dense array of Dubins paths and arrays using
Nazcas s-bends and cobra splines is made:

As one can see, not only do other interconnects lead to over-bending of the waveguides
and thus a longer path and greater losses, they are also less reliable, predictable, often
break the design rules to not violate the minimum bending radius as is indeed
the case here. They even intersect each other! Meanwhile, the Dubins paths behave
extremely predictably. They clearly show the shortest path without unnecessary bends and
they do not intersect each other which allows for much denser layouts than would be
possible with the other interconnects.

There is a list of improvements one may make based on this. For one, the curvature of
Dubins paths are not smooth which may lead to higher radiation losses. Still, the hours of
headaches I personally avoided just by using Dubins paths are insane. It is also simply much
more enjoyable to use.

That’s my little tip for those working on photonic integrated circuit layouts. I hope it helps!

Citing
If so, you can cite:

@article{QWachDubin2024,
 author = {Quentin Wach},
 title = {Dubins Paths for Waveguide Routing},
 year = {2024}
}

References
1. Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average Curvature, and

with Prescribed Initial and Terminal Positions and Tangents”. American Journal of
Mathematics. 79 (3): 497–516, 1957 ↩

https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://en.wikipedia.org/wiki/Dubins_path

2. Wikipedia: Dubins Paths (Accessed: Feb 20, 2024) ↩

3. David A. Anisi, “Optimal Motion Control of a Ground Vehicle”, 2003 ↩

4. Andy G, “A Comprehensive Step by Step Tutorial to Computing Dubins Paths” ↩

5. Atsushi Sakai, “Python Robotics: Dubins Path Planning”, GitHub. (Accessed: Feb 20,
2024) ↩

6. J. D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science &
Engineering, vol. 9, no. 3, pp. 90-95, 2007. ↩

7. Nazca Design: Photonic IC Design Framework ↩

8. GDSFactory, GitHub ↩

https://en.wikipedia.org/wiki/Dubins_path
https://people.kth.se/~anisi/articles/foi-r-0961-se.pdf
https://people.kth.se/~anisi/articles/foi-r-0961-se.pdf
https://people.kth.se/~anisi/articles/foi-r-0961-se.pdf
https://gieseanw.wordpress.com/2012/10/21/a-comprehensive-step-by-step-tutorial-to-computing-dubins-paths/
https://gieseanw.wordpress.com/2012/10/21/a-comprehensive-step-by-step-tutorial-to-computing-dubins-paths/
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://atsushisakai.github.io/PythonRobotics/modules/path_planning/dubins_path/dubins_path.html
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://matplotlib.org/stable/
https://nazca-design.org/
https://github.com/gdsfactory/gdsfactory

