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It will be seen that the effect of expressing approval
when a particular figure has been printed is to increase
the chance of that figure being printed on subsequent
occasions, and so, if done sufficient times, to give the
appearance of a conditioned reflex action having been
established.

GENERALIZED LEARNING PROGRAMS

The construction of a learning program of the above
type presents no difficulty to anyone who is familiar with
the technique of programming. However, such a pro-
gram makes it possible to teach the machine only those
things which the programmer had in mind when he wrote
the program. For example, the program just described
would not enable the operator to teach the machine to
print different figures after alternate stimuli. If the pro-
grammer had wished to do so, he could have allowed for
this possibility in his program. In fact, at the expense of
making the program longer and more complicated, he
could include any number of extra features, but obvi-
ously he could not think of every possible experiment
which anyone might wish to try on the machine.

All the programmer is doing, in fact, is to program the
action of the machine as it were at one remove; when he
writes the program he visualizes, if not in complete de-
tail, at any rate in general terms, all the possible actions
which the machine can take in response to legitimate ac-
tions on the part of the operator.

Such programms are not, therefore, as interesting as at
first sight might appear from the point of view of this
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article. What is wanted is a “generalized” learning pro-
gram, which would enable an operator to teach the ma-
chine anything he chose, whether the idea of his doing
so had occurred to the programmer or not. I believe that
such a program would not be a mere elaboration of the
simple learning programs which have been constructed
up to date but would need to be based on some entirely
new ideas. Presumably the program would modify and
extend itself as the learning process went on.

As I have pointed out, existing machines contain the
means for this extension; the difficulty is to construct a
program to make use of them. If such a program could
be made then it would be possible to teach the machine
in much the same way as a child is taught.

Whether the new ideas I have referred to will be forth-
coming, it is hard to say. Certainly, for the present,
progress appears to be held up. Perhaps this will give
comfort to those who cannot bear the idea of machines
thinking; on the other hand it may stimulate others to
further effort.
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Computers and Automata®
CLAUDE E. SHANNONY, FELLOW, IRE

advances in human knowledge.—T%e Editor

C. E. Shannon first became known for a paper in which he applied Boolean Algebra to relay
switching circuits; this laid the foundation for the present extensive application of Boolean Algebra
to computer design. Dr. Shannon, who is engaged in mathematical research at Bell Telephone
Laboratories, is an authority on information theory. More recently he received wide notice for his
ingenious maze-solving mechanical mouse, and he is well-known as one of the leading explorers
into the exciting, but uncharted world of new ideas in the computer field.

The Editors asked Dr. Shannon to write a paper describing current experiments, and specula-
tions concerning future developments in computer logic. Here is a real challenge for those in
search of a field where creative ability, imagination, and curiosity will undoubtedly lead to major

Summary—This paper reviews briefly some of the recent de-
velopments in the field of automata and nonnumerical computation.
A number of typical machines are described, including logic ma-
chines, game-playing machines and learning machines. Some theo-
retical questions and developments are discussed, such as a com-
parison of computers and the brain, Turing’s formulation of comput-
ing machines and von Neumann’s models of self-reproducing ma-
chines.

* Decimal classification: 621.385.2. Original manuscript received
by the Institute, July 17, 1953
1 Bell Telephone Laboratories, Murray Hill, N. J.

INTRODUCTION
SAMUEL BUTLER, in 1871, completed the manu-

script of a most engaging social satire, Erewhon.

Three chapters of Erewhon, originally appearing
under the title “Darwin Among the Machines,” are a
witty parody of The Origin of Species. In the topsy-
turvy logic of satirical writing, Butler sees machines as
gradually evolving into higher forms. He considers the
classification of machines into genera, species and vari-
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eties, their feeding habits, their rudimentary sense or-
gans, their reproductive and evolutionary mechanisms
(inefficient machines force men to design more efficient
ones), tendencies toward reversion, vestigial organs,
and even the problem of free will in machines.

Rereading Erewhon today one finds “The Book of the
Machines” disturbingly prophetic. Current and pro-
jected computers and control systems are indeed as-
suming more and more the capacities and functions of
animals and man, to a far greater degree, in fact, than
was envisaged by Butler.

The bread-and-butter work of large-scale computers
has been the solution of involved numerical problems.
To many of us, however, the most exciting potentialities
of computers lie in their ability to perform non-numer-
ical operations—to work with logic, translate lan-
guages, design circuits, play games, co-ordinate sensory
and manipulative devices and, generally, assume com-
plicated functions associated with the human brain.

Non-numerical computation is by no means an un-
proven offspring of the more publicized arithmetic cal-
culation. The shoe is rather on the other foot. A hun-
dred years ago Charles Babbage was inspired in the
design of his remarkably prescient analytical engine by
a portrait woven in silk on a card controlled Jacquard
loom—a device then in existence half a century. The
largest and most reliable current information processing
machine is still the automatic telephone system. Qur
factories are filled with ingenious and unsung devices
performing almost incredible feats of sensing, processing
and transporting materials in all shapes and forms. Rail-
way and power systems have elaborate control and pro-
tective networks against accidents and human errors.

These, however, are all special-purpose automata. A
significant new concept in non-numerical computation
is the idea of a general-purpose programmed computer—
a device capable of carrying out a long sequence of
elementary orders analogous to those of a numerical
computer. The elementary orders, however, will relate
not to operations on numbers but to physical motions,
operations with words, equations, incoming sensory
data, or almost any physical or conceptual entities.

This paper reviews briefly some of the research in non-
numerical computation and discusses certain of the
problems involved. The field is currently very active
and in a short paper only a few sample developments
can be mentioned.

TaE BRAIN AND COMPUTERS

The brain has often been compared, perhaps over-
enthusiastically, with computing machines. It contains
roughly 10!° active elements called neurons. Because
of the all or none law of nervous action, neurons bear
some functional resemblance to our binary computer
elements, relays, vacuum tubes or transistors. The num-
ber of elements is six orders of magnitude greater than
our largest computers. McCullough has picturesquely
put it that a computer with as many tubes as a man

has neurons would require the Emﬁire State building to
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house it, Niagara Falls to power it and the Niagara
river to cool it. The use of transistors in such a com-
parison would improve the figures considerably, power
requirements coming down to the hundreds of kilowatt
range (the brain dissipates some 25 watts) and size re-
quirements (with close packing) comparable to an ordi-
nary dwelling. It may also be argued that the increased
speed of electronic components by a factor of, say, 10®
might be partially exchangeable against equipment re-
quirements.

Comparisons of this sort should be taken well salted
—our understanding of brain functioning is still, in spite
of a great deal of important and illuminating research,
very primitive. Whether, for example, the neuron itself
is the proper level for a functional analysis is still an
open question. The random structure at the neural level
in number, placement and interconnections of the neu-
rons, suggests that only the statistics are important at
this stage, and, consequently, that one might average
over local structure and functioning before constructing
a mathematical model.

The similarities between the brain and computers
have often been pointed out. The differences are per-
haps more illuminating, for they may suggest the im-
portant features missing from our best current brain
models. Among the most important of these are:

1. Differences in size. Six orders of magnitude in the
number of components takes us so far from our
ordinary experience as to make extrapolation of
function next to meaningless.

2. Differences in structural organization. The appar-
ently random local structure of nerve networks is
vastly different from the precise wiring of artificial
automata, where a single wrong connection may
cause malfunctioning. The brain somehow is de-
signed so that overall functioning does not depend
on the exact structure in the small.

3. Differences in reliability organization. The brain
can operate reliably for decades without really seri-
ous malfunctioning (comparable to the meaning-
less gibberish produced by a computer in trouble
conditions) even though the components are prob-
ably individually no more reliable than those used
in computers.

4. Differences in logical organization. The differences
here seem so great as to defy enumeration. The
brain is largely self-organizing. It can adapt to an
enormous variety of situations tolerably well. It
has remarkable memory classification and access
features, the ability to rapidly locate stored data
via numerous “coordinate systems.” It can set up
stable servo systems involving complex relations
between its sensory inputs and motor outputs,
with great facility. In contrast, our digital com-
puters look like idiot savants. For long chains of
arithmetic operations a digital computer runs cir-
cles around the best humans. When we try to pro-
gram computers for other activities their entire

organization seems clumsy and inappropriate.
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5. Differences in input-output equipment. The brain
is equipped with beautifully designed input organs,
particularly the ear and the eye, for sensing the
state of its environment. Our best artificial coun-
terparts, such as Shepard’'s Analyzing Reader for
recognizing and transcribing type, and the
“Audrey” speech recognition system which can
recognize the speech sounds for the ten digits seem
pathetic by comparison. On the output end, the
brain controls hundreds of muscles and glands.
The two arms and hands have some sixty inde-
pendent degrees of freedom. Compare this with
the manipulative ability of the digitally controlled
milling machine developed at M.I.T., which can
move its work in but three co-ordinates. Most of
our computers, indeed, have no significant sensory
or manipulative contact with the real world but
operate only in an abstract environment of num-
bers and operations on numbers.

TURING MACHINES

The basic mathematical theory of digital computers
was developed by A. M. Turing in 1936 in a classic
paper “On Computable Numbers with an Application
to the Entscheidungsproblem.” He defined a class of
computing machines, now called Turing machines, con-
sisting basically of an infinite paper tape and a comput-
ing element. The computing element has a finite number
of internal states and is capable of reading from and
writing on one cell of the tape and of moving it one cell
to the right or left. At a given time, the computing ele-
ment will be in a certain state and reading what is writ-
ten in a particular cell of the tape. The next operation
will be determined by the current state and the symbol
being read. This operation will consist of assuming a
new state and either writing a new symbol (in place of
the one currently read) or moving to the right or to the
left. It is possible for machines of this type to compute
numbers by setting up a suitable code for interpreting
the svmbols. For example, in Turing’s formulation the
machines print final answers in binary notation on al-
ternate cells of the tape, using the other cells for inter-
mediate calculations.

It can be shown that such machines form an ex-
tremely broad class of computers. All ordinary digital
computers which do not contain a random or probabil-
istic element are equivalent to some Turing machine.
Any number that can be computed on these machines,
or in fact by any ordinary computing process, can be
computed by a suitable Turing machine. There are,
however, as Turing showed, certain problems that can-
not be solved and certain numbers that cannot be com-
puted by any Turing machine. For example, it is not
possible to construct a Turing machine which, given a
suitably coded description of another Turing machine,
can always tell whether or not the second Turing ma-
chine will continue indefinitely to print symbols in the
squares corresponding to the final answer. It may, at a
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certain point in the calculation, relapse into an infinite
intermediate computation. The existence of mechan-
ically unsolvable problems of this sort is of great interest
to logicians.

Turing also developed the interesting concept of a
universal Turing machine. This is a machine with the
property that if a suitably coded description of any Tur-
ing machine is printed on its tape, and the machine
started at a suitable point and in a suitable state, it will
then act like the machine described, that is, compute
(normally at a much slower rate) the same number that
the described machine would compute. Turing showed
that such universal machines can be designed. They of
course are capable of computing any computable num-
ber. Most digital computers, provided they have ac-
cess to an unlimited memory of some sort, are equiva-
lent to universal Turing machines and can, in principle,
imitate any other computing machine and compute any
computable number.

The work of Turing has been generalized and reformu-
lated in various ways. One interesting generalization is
the notion of A computability. This relates to a class
of Turing type machines which have the further {eature
that they can, at certain points of the calculation, ask
questions of a second “oracular” device, and use the
answers in further calculations. The oracular machine
may for example have answers to some of the unsolvable
problems of ordinary Turing machines, and conse-
quently enable the solution of a larger class of problems.

Locic MACHINES

Boolean algebra can be used as a mathematical tool
for studying the properties of relay and switching cir-
cuits. Conversely, it is possible to solve problems of
Boolean algebra and formal logic by means of simple
relay circuits. This possibility has been exploited in a
number of logic machines. A typical machine of this
kind, described by McCallum and Smith, can handle
logical relations involving up to seven classes or truth
variables. The required relations among these variables,
given by the logical problem at hand, are plugged into
the machine by means of a number of “connective
boxes.” These connective boxes are of six types and
provide for the logical connectives “not,” “and,” “or,”
“or else,” “if and only if,” and “if-then.” When the con-
nections are complete, starting the machine causes it to
hunt through the 27=128 combinaticns of the basic
variables, stopping at all combinations which satisfy
the constraints. The machine also indicates the number
of “true” variables in each of these states. McCallum
and Smith give the following typical problem that may
be solved on the machine:

It is known that salesmen always tell the truth and engi-
neers always tell lies. G and E are salesmen. C states that
D is an engineer. A declares that B affirms that C asserts
that D says that E insists that F denies that G is a sales-
man. If A is an engineer, how many engineers are there?

A very suggestive feature in this machine is a selec-
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tive feedback system for hunting for particular solutions
of the logical equations without an exhaustive search
through all possible combinations. This is achieved by
elements which sense whether or not a particular logi-
cal relation is satisfied. 1f not, the truth variables in-
volved in this relation are caused to oscillate between
their two possible values. Thus, variables appearing in
unsatisfied relations are continually changing, while
those appearing only in satisfied relations do not change.
If ever all relations are simultaneously satisfied the
machine stops at that particular solution. Changing
only the variables in unsatisfied relations tends, in a
general way, to lead to a solution more rapidly than
methodical exhaustion of all cases, but, as is usually the
case when feedback is introduced, leads to the pos-
sibility of continual oscillation. McCallum and Smith
point out the desirability of making the changes of the
variables due to the feedback unbalance as random as
possible, to enable the machine to escape from periodic
paths through various states of the relays.

GAME PLAYING MACHINES

The problem of designing game-playing machines is
fascinating and has received a good deal of attention.
The rules of a game provide a sharply limited environ-
ment in which a machine may operate, with a clearly
defined goal for its activities. The discrete nature of
most games matches well the digital computing tech-
niques available without the cumbersome analog-digital
conversion necessary in translating our physical en-
vironment in the case of manipulating and sensing
machines.

Game playing machines may be roughly classified
into types in order of increasing sophistication:

1. Dictionary-type machines. Here the proper move
of the machine is decided in advance for each pos-
sible situation that may arise in the game and
listed im a “dictionary” or function table. When
a particular position arises, the machine merely
looks up the move in the dictionary. Because of
the extravagant memory requirements, this rather
uninteresting method is only feasible for excep-
tionally simple games, e.g., tic-tac-toe.

2. Machines using rigorously correct playing for-
mulas. In some games, such as Nim, a complete
mathematical theory is known, whereby it is pos-
sible to compute by a relatively simple formula,
in any position that can be won, a suitable winning
move. A mechanization of this formula provides a
perfect game player for such games.

3. Machines applying general principles of approx-
imate validity. In most games of interest to hu-
mans, no simple exact solution is known, but there
are various general principles of play which hold
in the majority of positions. This is true of such
games as checkers, chess, bridge, poker and the
like. Machines may be designed applying such
general principles to the position at hand. Since
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the principles are not infallible, neither are the
machines, as indeed, neither are humans.

4. Learning machines. Here the machine is given only
the rules of the game and perhaps an elementary
strategy of play, together with some method of
improving this strategy through experience.
Among the many methods that have been sug-
gested for incorporation of learning we have:

a) trial-and-error with retention of successful
and elimination of unsuccessful possibilities;

b) imitation of a more successful opponent;

c) “teaching” by approval or disapproval, or by
informing the machine of the nature of its mis-
takes; and finally

d) self-analysis by the machine of its mistakes
in an attempt to devise general principles.

Many examples of the first two types have been con-

structed and a few of the third. The fourth type, learn-
ing game-players, is reminiscent of Mark Twain’s com-

.ment on the weather. Here is a real challenge for the

programmer and machine designer.

Two examples of the third category, machines ap-
plying general principles, may be of interest. The first
of these is a machine designed by E. F. Moore and the
writer for playing a commercial board game known as
Hex. This game is played on a board laid out in a
regular hexagon pattern, the two players alternately
placing black and white pieces in unoccupied hexagons.
The entire board forms a rhombus and Black’s goal is to
connect the top and bottom of this rhombus with a
continuous chain of black pieces. White's goal is to con-
nect the two sides of the rhombus with a chain of white
pieces. After a study of this game, it was conjectured
that a reasonably good move could be made by the fol-
lowing process. A two-dimensional potential field is set
up corresponding to the playing board, with white
pieces as positive charges and black pieces as negative
charges. The top and bottom of the board are negative
and the two sides positive. The move to be made cor-
responds to a certain specified saddle point in this field.

To test thisstrategy, an analog device was constructed,
consisting of a resistance network and gadgetry to lo-
cate the saddle points. The general principle, with some
improvements suggested by experience, proved to be
reasonably sound. With first move, the machine won
about seventy per cent of its games against human op-
ponents. It frequently surprised its designers by choos-
ing odd-looking moves which, on analysis, proved sound.
We normally think of computers as expert at long in-
volved calculations and poor in generalized value judg-
ments. Paradoxically, the positional judgment of this
machine was good; its chief weakness was in end-game
combinatorial play. It is also curious that the Hex-player
reversed the usual computing procedure in that it solved
a basically digital problem by an anlog machine.

The game of checkers has recently been programmed
into a general-purpose computer, using a “general prin-
ciple” approach. C. S. Strachey used a method similar to
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one proposed by the writer for programming chess—an
investigation of the possible variations for a few moves
and a minimax evaluation applied to the resulting posi-
tions. The following is a sample game played by the
checker program with notes by Strachey. (The white
squares are numbered consecutively, 0-31, from left to
right and top to bottom. Numbers in parentheses indi-
cate captures.)

MACHINE STRACHEY
11—15 23—18
7—11 21—17
8—12 20—16 a
12—21 (16) 25—16 (21)
9—14 1) 18— 9 (14)
6—20 (16, 9) ¢ 27—23
2—74d 23—18
5— 8 18—14
8—13¢ 17— 8 (13)
4—13 (8) 14— 9
1—5f 9— 6
15—19 6— 1 (K)
5—9 1— 6 2g
0— 51k 6—15 (10)
11—25 (22, 15) 30—21 (25)
13—17 21—14 (17)
9—18 (14) 2421
18—23 26—22
23—27 22—17
5— 84 17—14
8—13 14— 9
19—23 9— 6
23—26 § 31—22 (26)
27—31 (K) 6— 2 (K)
7—10 2— 7
10—15 21—16
3—10 (7) 16— 9 (13)
10—14 9— 6
15—19 6— 2 (K)
31—27m 2— 6
27—31m 6—10
31—26 n 10—17 (14)
1923 2925
26—31 p

Notes:

a) An experiment on my part—the only deliberate offer I made.
I thought, wrongly, that it was quite safe.

b) Not foreseen by me.

¢) Better than 5-21 (9, 17).

d) AI random move (zero value). Shows the lack of a constructive
plan.

e) Another random move of zero value. Actually rather good.
Bad. Ultimately allows me to make a King. 10-14 would
would have been better.

g) A bad slip on my part.

k) Taking full advantage of my slip.

1) Bad, unblocks the way to a King.

7) Sacrifice in order to get a King (not to stop me Kinging). A
good move, but not possible before 19-23 had been made by

nce.

k) Another bad slip on my part.

m) Purposeless. The strategy is failing badly in the end game.

n) Too late. )

p) Futile. The game was stopped at this point as the outcome
was obvious.

While obviously no world champion, the machine is
certainly better than many humans. Strachey points
out various weaknesses in the program, particularly in
certain end-game positions, and suggests possible im-
provements.

LEARNING MACHINES

The concept of learning, like those of thinking, con-
sciousness and other psychological terms, is difficult to
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define precisely in a way acceptable to the various inter-
ested parties. A rough formulation might be framed
somewhat as follows. Suppose that an organism or a ma-
chine can be placed in, or connected to, a class of en-
vironments, and that there is a measure of “success” or
“adaptation” to the environment. Suppose further that
this measure is comparatively local in time, that is, that
one can measure the success over periods of time short
compared to the life of the organism. If this local meas-
ure of success tends to improve with the passage of
time, for the class of environments in question, we may
say that the organism or machine is learning to adapt to
these environments relative to the measure of success
chosen. Learning achieves a quantitative significance in
terms of the broadness and complexity of the class of
environments to which the machine can adapt. A chess
playing machine whose frequency of wins increases dur-
ing its operating life may be said by this definition to
be learning chess, the class of environments being the
chess players who oppose it, and the adaptation meas-
sure, the winning of games.

A number of attempts have been made to construct
simple learning machines. The writer constructed a
maze-solving device in which an arbitrary maze can be
set up in a five-by-five array of squares, by placing
partitions as desired between adjacent squares. A per-
manently magnetized “mouse,” placed in the maze,
blunders about by a trial and error procedure, striking
various partitions and entering blind alleys until it
eventually finds its way to the “food box.” Placed in
the maze a second time, it will move directly to the food
box from any part of the maze that it has visited in its
first exploration, without errors or false moves. Placed
in other parts of the maze, it will blunder about until it
reaches a previously explored part and from there go
directly to the goal. Meanwhile it will have added the
information about this part of the maze to its memory,
and if placed at the same point again will go directly
to the goal. Thus by placing it in the various unexplored
parts of the maze, it eventually builds up a complete
pattern of information and is able to reach the goal di-
rectly from any point.

If the maze is now changed, the mouse first tries the
old path, but on striking a partition starts trying other
directions and revising its memory until it eventually
reaches the goal by some other path. Thus it is able to
forget an old solution when the problem is changed.

The mouse is actually driven by an electromagnet
moving beneath the maze. The motion of the electro-
magnet is controlled by a relay circuit containing about
110 relays, organized into a memory and a computing
circuit, somewhat after that of a digital computer.

The maze-solver may be said to exhibit at a very
primitive level the abilities to (1) solve problems by
trial and error, (2) repeat the solutions without the
errors, (3) add and correlate new information to a par-
tial solution, (4) forget a solution when it is no longer
applicable.

Authorized licensed use limited to: Fhl fur Nachrichten-technik. Downloaded on March 12,2024 at 21:51:14 UTC from IEEE Xplore. Restrictions apply.



1953

Another approach to mechanized learning is that of
suitably programming a large-scale computer. A. E.
Oettinger has developed two learning programs for the
Edsac computer in Cambridge, England. In the first of
these, the machine was divided into two parts, one part
playing the role of a learning machine and the second
its environment. The environment represented ab-
stractly a number of stores in which various items might
be purchased, different stores stocking different classes
of items. The learning machine faced the problem of
learning where various items might be purchased. Start-
ing off with no previous knowledge and a particular
item to be obtained, it would search at random among
the stores until the item was located. When finally suc-
cessful, it noted in its memory where the article was
found. Sent again for the same article it will go directly
to the shop where it previously obtained this article. A
further feature of the program was the introduction of
a bit of “curiosity” in the learning machine. When it
succeeded in finding article number j in a particular
shop it also noticed whether or not that shop carried
articles j—1 and j+1 and recorded these facts in its
memory.

The second learning program described by Oettinger
is modeled more closely on the conditioned reflex be-
havior of animals. A stimulus of variable intensity can
be applied to the machine in the form of an input in-
teger. To this stimulus the machine may respond in a
number of different ways indicated by an output in-
teger. After the response, it is possible for the operator
to indicate approval or disapproval by introducing a
third integer at a suitable point. When the machine
starts operating, its responses to stimuli are chosen at
random. Indication of approval improves the chances for
the response immediately preceding; indication of dis-
approval reduces this chance. Furthermore, as a par-
ticular response is learned by conditioning it with ap-
proval, the stimulus required for this response decreases.
Finally, there is a regular decay of thresholds when no
approval follows a response.

Further embellishments of programs of this sort are
limited only by the capacity of the computer and the
energy and ingenuity of the program designer. Unfor-
tunely, the elementary orders available in most large-
scale computers are poorly adapted to the logical re-
quirements of learning programs, and the machines are
therefore used rather inefficiently. It may take a dozen
or more orders to represent a logically simple and fre-
quently used operation occurring in a learning routine.

Another type of learning machine has been con-
structed by D. W. Hagelbarger. This is a machine de-
signed to play the game of matching pennies against a
human opponent. On the front panel of the machine are
a start button, two lights marked + and —, and a key
switch whose extreme positions are also marked + and
—. To play against the machine, the player chooses -+
or —, and then pushes the start button. The machine
will then light up one of the two lights. If the machine
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matches the player, that is, lights the light correspond-
ing to the choice of the player, the machine wins; other-
wise the player wins. When the play is complete, the
player registers by appropriate movement of the key
switch the choice he made.

The machine is so constructed as to analyze certain
patterns in the players’ sequence of choices, and at-
tempt to capitalize on these patterns when it finds them.
For example, some players have a tendency if they have
won a round, played the same thing and won again, to
then change their choice. The machine keeps count of
these situations and, if such tendencies appear, plays
in such a way as to win. When such patterns do not ap-
pear the machine plays at random.

It has been found the machine wins about 55-60 per
cent of the rounds, while by chance or against an op-
ponent that played strictly at random it would win only
50 per cent of the time. It appears to be quite difficult
for a human being to produce a random sequence of
pluses and minuses (to insure the 50 per cent wins
he is entitled to by the theory of games) and even more
difficult to actually beat the machine by leading it on
to suspect patterns, and then reversing the patterns.

A second penny-matching machine was designed by
the writer, following the same general strategy but using
a different criterion to decide when to play at random
and when to assume that an apparent behavior pattern
is significant. After considerable discussion as to which
of these two machines could beat the other, and fruitless
attempts to solve mathematically the very complicated
statistical problem involved when they are connected
together, the problem was relegated to experiment. A
third small machine was constructed to act as umpire
and pass the information back and forth between the
machines concerning their readiness to make a move and
the choices made. The three machines were then plugged
together and allowed to run for a few hours, to the ac-
companiment of small side-bets and loud cheering.
Ironically, it turned out that the smaller, more precipi-
tate of the two machines consistently beat the larger,
more deliberate one in a ratio of about 55 to 45.

A still different type of learning machine was devised
by W. Ross Ashby who christened it the Homeostat.
Homeostasis, a word coined by Walter B. Cannon, re-
lates to an animal’s ability to stabilize, by feedback,
such biological variables as body temperature, chemical
concentrations in the blood stream, etc. Ashby’s device
is a kind of self-stabilizing servo system. The first model
of the Homeostat contained four interconnected servos.
The cross-connections of these servos passed through
four stepping switches and resistors connected to the
points of the steppers. Thus the effect of unbalance in
the other three loops on a particular loop depended on
the values of the resistors being contacted by the stepper
associated with that loop. When any one of the servos
was sufficiently out of balance, a corresponding limit
relay would operate and cause the corresponding step-
ping switch to advance one point. Now normally, a
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servo system with four degrees of freedom and random
cross- and self-gain figures will not be stable. If this
occurred, one or more of the stepping switches would
advance and a new set of resistors would produce a new
set of gain figures. If this set again proved unstable, a
further advance of the steppers would occur until a
stable situation was found. The values of the resistors
connected to the stepping switches were chosen by ran-
dom means (using a table of randon numbers). Facilities
were provided for introducing many arbitrary changes
or constraints among the servos. For example, their con-
nections could be reversed, two of them could be tied
together, one of them held at a fixed value, etc. Under
all these conditions, the mechanism was able to find a
suitable stable position with all the servos in balance.
Considering the machine’s goal to be that of stabilizing
the servos, and the environment to be represented by
the various alterations and constraints introduced by
the operator, the Homeostat may be said to adapt to its
environment.

Certain features of the Homeostat are quite attrac-
tive as a basis for learning machines and brain models.
It seems in certain ways to do a bit more than was ex-
plicitly designed into it. For example, it has been able
to stabilize under situations not anticipated when the
machine was constructed. The use of randomly chosen
resistors is particularly suggestive and reminiscent of
the random connections among neurons in the brain.
Ashby, in fact, believes that the general principle em-
bodied in the Homeostat, which he calls ultra-stability,
may underlie the operation of the animal nervous sys-
tem. One of the difficulties of a too direct application
of this theory is that, as Ashby points out, the time
required for finding a stable solution grows more or
less exponentially with the number of degrees of free-
dom. With only about 20 degrees of freedom, it would
require many lifetimes to stabilize one system. At-
tempts to overcome this difficulty lead to rather in-
volved conceptual constructions, so involved that it is
extremely difficult to decide just how effectively they
would operate. Our mathematical tools do not seem
sufficiently sharp to solve these problems and further
experimental work would be highly desirable.

SELF-REPRODUCING MACHINES

In Erewhon the reproduction process in machines was
pictured as a kind of symbiotic co-operation between
man and machines, the machines using man as an inter-
mediary to produce new machines when the older ones
were worn out. Man's part is akin to that of the bee in
the fertilization of flowers. Recently von Neumann has
studied at an abstract level the problem of true self-
reproduction in machines, and has formulated two dif-
ferent mathematical models of such “machines.”

The first of these may be pictured somewhat as fol-
lows. “Machines” in the model are constructed from a
small number (of the order of twenty) types of ele-
mentary components. These components have relatively
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simple functions, for example, girders for structural pur-
poses, elementary logical elements similar to simplified
relays or neurons for computing, sensing components
for detecting the presence of other elements, joining
components (analogous to a soldering iron) for fastening
elements together, and so on. From these elements, vari-
ous types of machines may be “constructed.” In particu-
lar, it is possible to design a kind of universal construc-
tion machine, analogous to Turing’s universal comput-
ing machine. The universal constructing machine can
be fed a sequence of instructions, similar to the program
of a digital computer, which describe in a suitable code
how to construct any other machine that can be built
with the elementary components. The universal con-
structing machine will then proceed to hunt for the
needed components in its environment and build the
machine described on its tape. If the instructions to the
universal constructing machine are a description of the
universal constructing machine itself, it will proceed to
build a copy of itself, and would be a self-reproducing
machine except for the fact that the copy is not yet
supplied with a set of instructions. By adding to the uni-
versal machine what amounts to a tape-copying device
and a relatively simple controlling device, a true self-
reproducing machine is obtained. The instructions now
describe the original universal machine with the addi-
tion of the tape reproducer and the controlling device.
The first operation of the machine is to reproduce this
entity. The controlling device then sends the instruction
tape through the tape reproducer to obtain a copy,
and places this copy in the second machine. Finally,
it turns the second machine on, which starts reading its
instructions and building a third copy, and so ad in-
finitum.

More recently, von Neumann has turned from this
somewhat mechanical model to a more abstract self-
reproducing structure—one based on a two-dimensional
array of elementary “cells.” Each cell is of relatively
simple internal structure, having, in fact, something like
thirty possible internal states, and each cell communi-
cates directly only with its four neighbors. The state of
a cell at the next (quantized) step in time depends only
on the current state of the cell and the states of its four
neighbors. By a suitable choice of these state transitions
it is possible to set up a system yielding a kind of self-
reproducing structure. A group of contiguous cells can
act as an organic unit and operate on nearby quiescent
cells in such a way as to organize a group of them into
an identical unit.

This second model avoids many of the somewhat
extraneous problems of locating, recognizing and posi-
tioning components that were inherent in the first
model, and consequently leads to a simpler mathemati-
cal formulation. Furthermore, it has certain analogies
with various chemical and biological problems, such as
those of crystal and gene reproduction, while the first
model is more closely related to the problem of large
scale animal reproduction.
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An interesting concept arising from both models is the
notion of a critical complexity required for self-repro-
duction. In either case, only sufficiently complicated
“machines” will be capable of self-reproduction. Von
Neumann estimates the order of tens of thousands of
components or cells to obtain this property. Less com-
plicated structures can only construct simpler “ma-
chines” than themselves, while more complicated ones
may be capable of a kind of evolutionary improvement
leading to still more complicated organisms.

CHALLENGE TO THE READER

We hope that the foregoing sample of non-numerical
computers may have stimulated the reader’s appetite
for research in this field. The problem of how the brain
works and how machines may be designed to simulate
its activity is surely one of the most important and
difficult facing current science. Innumerable questions
demand clarification, ranging from experimental and
development work on the one hand to purely mathe-
matical research on the other. Can we design significant
machines where the connections are locally random?
Can we organize machines into a hierarchy of levels, as
the brain appears to be organized, with the learning of
the machine gradually progressing up through the hier-
archy? Can we program a digital computer so that
(eventually) 99 per cent of the orders it follows are
written by the computer itself, rather than the few per
cent in current programs? Can a self-repairing machine
be built that will locate and repair faults in its own
components (including components in the maintenance
part of the machine)? What does a random element add
in generality to a Turing machine? Can manipulative
and sensory devices functionally comparable to the
hand and eye be developed and coordinated with com-
puters? Can either of von Neumann's self-reproducing
models be translated into hardware? Can more satis-
factory theories of learning be formulated? Can a ma-
chine be constructed which will design other machines,
given only their broad functional characteristics? What
is a really good set of orders in a digital computer for
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general purpose non-numerical computation? How can
a computer memory be organized to learn and remem-
ber by association, in a manner similar to the human
brain?

We suggest these typical questions, and the entire
automata field, as a challenge to the reader. Here is
research territory ripe for scientific prospectors. It is
not a matter of reworking old operations, but of locat-
ing the rich new veins and perhaps in some cases merely
picking up the surface nuggets.
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