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ABSTRACT

Learning-in-memory (LIM) is a recently proposed paradigm to overcome fundamental memory
bottlenecks in training machine learning systems. While compute-in-memory (CIM) approaches
can address the so-called memory-wall (i.e. energy dissipated due to repeated memory read access)
they are agnostic to the energy dissipated due to repeated memory writes at the precision required
for training (the update-wall), and they don’t account for the energy dissipated when transferring
information between short-term and long-term memories (the consolidation-wall). The LIM paradigm
proposes that these bottlenecks, too, can be overcome if the energy barrier of physical memories
is adaptively modulated such that the dynamics of memory updates and consolidation match the
Lyapunov dynamics of gradient-descent training of an Al model. In this paper, we derive new
theoretical lower bounds on energy dissipation when training Al systems using different LIM
approaches. The analysis presented here is model-agnostic and highlights the trade-off between
energy efficiency and the speed of training. The resulting non-equilibrium energy-efficiency bounds
have a similar flavor as that of Landauer’s energy-dissipation bounds. We also extend these limits by
taking into account the number of floating-point operations (FLOPs) used for training, the size of
the Al model, and the precision of the training parameters. Our projections suggest that the energy-
dissipation lower-bound to train a brain scale Al system (comprising of 10'® parameters) using LIM
is 108 ~ 10? Joules, which is on the same magnitude the Landauer’s adiabatic lower-bound and 6
to 7 orders of magnitude lower than the projections obtained using state-of-the-art Al accelerator
hardware lower-bounds.
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1 Introduction

In recent years, the increasing success of artificial intelligence (AI) systems has been marked by rapid growth in the
size and complexity of the underlying mathematical models[1]. This trend has not only been driven by the availability
of large data sets used for training, but also by advances in hardware accelerators that can train these complex Al
models within realistic time, energy, and cost constraints. However, their progress has also highlighted significant
challenges on the long road towards general Al or brain-scale Al systems [2,[3]. This is apparent in the trends shown in
Figure |1} which relates the reported number of floating-point operations (FLOPS) required to train various Al systems
of different sizes to the number of trainable parameters. For smaller-size models (number of parameters less than 10),
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Figure 1: Trends showing the growth of computational and energy needs for training Al models [6], which has been
used to predict the 10?® FLOPs and 10'7 J of energy that would be needed to train a brain-scale AI model.

the number of training FLOPS is used to scale quadratically with the number of parameters. However, this cost has
become prohibitive for large-scale Al models, so significant effort in recent years has been devoted to finding more
efficient training methods. The scaling for these newer state-of-the-art large language models (LLMs), depicted in
Figure [T} appears to be linear. But even this favorable trend becomes prohibitively costly when extrapolated to the
number of FLOPS (around 10%8) that would be required to train a brain-scale Al system comprising 10'® parameters,
which roughly equals the number of synapses in a human brain [4} 5]

To estimate the total energy required to train such a system, we can relate its energy consumption to the number
of FLOPS performed during training, which appears to be a linear relationship, as depicted in Figure [I] where we
have used reported energy dissipation metrics for several Al systems [7, 18, 9] for benchmarking. Extrapolating this
FLOPs-to-energy relation to a brain-scale AI model, as shown in Figure[T[b), the energy dissipated to train the model
can be estimated to be 1017 J or equivalently 2.78 x 10" MW h. For reference, this energy estimate equals the energy
consumption of a typical U.S. household for 2,500,000 years [10,3]]. Such an unsustainable energy footprint for training
Al systems in general, and in particular for deep-learning systems, has also been predicted in recent empirical reports
and analyses [11]. Also, note that these energy dissipation estimates correspond to only a single round of training,
whereas many commercial applications of large-scale AI models or their use in scientific discovery may require multiple
rounds of training [[12} [13| [14], further exacerbating the total energy footprint.

Similar to many other large computing tasks, the energy footprint for training Al systems arises primarily from memory
bottlenecks [15} [16]. Unlike Al inference, Al training involves searching over a large set of parameters and hence
requires repeated memorization, caching, and pruning. For a conventional Von-Neumann computer architecture, the
compute and memory units are physically separated. Thus, frequent parameter updates across the physical memory
hierarchy contribute to significant energy dissipation, which can be categorized into three performance walls [17]: the
memory-wall, the update-wall, and the consolidation-wall, all of which are illustrated in Figure |Z}abc. The memory-
wall [[16] arises because of energy-dissipation due to the frequent data transfers between the computation and storage
units across a memory bus (depicted in Figure Zh). In emerging Al hardware, the memory-wall is addressed by
co-locating the memory and computation functional units [[18} [19], in part motivated by neurobiology [20]]. This
compute-in-memory (CIM) paradigm has also been proposed for implementing ultra-energy-efficient neuromorphic
systems [21]] and analog classifiers [22] where physical synapses (memory) within the neurons (compute units) are
embedded in a cross-bar architecture. While the CIM paradigm can significantly improve the energy efficiency for Al
inference, unfortunately, the paradigm does not address the other two performance walls due to the energy dissipation
caused by memory writes (the update-wall), nor due to data transfers across the memory hierarchy (the consolidation-
wall). In fact, the reliance on non-volatile memory may exacerbate these problems. The update-wall arises because for
most storage technology the energy dissipated during memory writes is significantly higher than the energy needed
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Figure 2: Performance walls that determine energy-efficiency of Al training (a) Memory-wall which arises due to
frequent memory access by remote compute units; (b) Update-wall which arises due to high energy cost of memory
writes at a required precision; (¢) Consolidation-wall which arises due to limited memory capacity and hence repeated
data transfers across different memory hierarchy (short-term and long-term storage).

to read the contents of a memory [23]]. This poses a particular challenge for the large number of memory writes and
relatively high precision required for the parameter updates [24 [25] during Al training. The consolidation-wall arises
due to the limited capacity of physical memory that can be integrated with or in proximity to the compute units [26} [27].
As a result, only some of the parameters of large AI models can be stored or cached locally, whereas the majority
has to be moved and consolidated off-chip. Repeated access to this off-chip memory and the consolidation overhead
in maintaining a working set of active parameters [28]] across different levels of memory cache hierarchy present a
significant source of energy-dissipation during Al training.

Analogous to the CIM paradigm, can neurobiology also provide similar cues on how to address the update- and
consolidation-walls? At a fundamental level the precision of biological synapses as storage elements is severely
limited [29]]. Despite this, some computations observed in neurobiology are surprisingly precise [30], which has
been attributed to a combination of massive parallelism, redundancy, and stochastic encoding principles [31 [32].
In this framework, intrinsic randomness and thermal fluctuations in the synaptic devices not only aid in achieving
higher precision during learning but also improve the energy efficiency through noise-exploitation [33]]. Note that
this paradigm of thermodynamics-driven (or Brownian) computing is not unique to biological synapses but has also
been observed in other biological processes like DNA hybridization [34]], and hence could be a key to address the
update-wall. Furthermore, there is growing evidence that biological synapses are inherently complex high-dimensional
dynamical systems themselves [35, 136] as opposed to the simple, static storage units that are typically assumed in
neural networks. This neuromorphic viewpoint is supported by experimental evidence of metaplasticity observed
in biological synapses [37,|38]], where the synaptic plasticity (e.g. the ‘ease’ of updates) has been observed to vary
depending on age and in a task-specific manner. Metaplasticity also plays a key role in neurobiological memory
consolidation[39, 40], where short-term information stored in ‘volatile’, easy-to-update memory in the hippocampus
is subsequently consolidated into long-term memory in the neocortex. Even though both of these spatially separated
memory systems are characterized by short-term and long-term storage dynamics (similar to synthetic memory systems),
they are tightly coupled to each other through distributed compute units (neurons).

Can the update- and consolidation-walls be addressed by locally adjusting the parameters of a physical memory?
Recent work has demonstrated silicon-based metaplastic synapses that can not only be used to improve training
energy-efficiency [41] but to achieve higher pattern storage capacity through memory consolidation [42]]. The key
premise is that if the physics of the memory elements can be exploited for parameter updates, computing, and memory
consolidation, then the energy dissipated during training could be significantly reduced. At the physical level, the
memory elements used in most Al hardware (for e.g. static random access memory or SRAM), are static in nature, i.e.
discrete memory states (.., W,,_1, W, ..) over time n are separated from each other by some static energy barrier E°,
as shown in Figure [3p. This energy barrier is generally chosen to be large enough to prevent memory leakage due to
thermal fluctuations, especially during inference, when the memory needs to be non-volatile. When transitioning from
state W,,_1 — W), the energy is irrevocably lost as shown in Figure [3p-c. Therefore, a learning/training algorithm
that minimizes a loss-function L(WV) (as shown in Figure ) by adapting the weights in quantized steps (shown in
Figure ) has to dissipate the energy EV for every update - irrespective of the dynamics of the optimization problem.
From a thermodynamic point of view, one can view this energy cost arising from the need to keep the entropy of the
learning trajectories in hardware close to zero. This is illustrated in Figure [3[d using a single trajectory (denoted by red
curve) from the initial state T to the final state W .

However, if the energy barrier were modulated with dynamics that are coupled to the dynamics of the learning process,
i.e. where the energy gradient AE changes with the algorithmic gradient AL(W) as shown in Figure , then it may
be possible to thermodynamically drive both Al training updates and memory consolidation. This principle has been
the basis of the recently reported learning-in-memory (LIM) paradigm [[17]] where the height of the energy-barrier is
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Figure 3: (a) A bi-stable memory model where stored weights W,, _; and W,, are separated by energy barrier E°. (b),(c)
Process of state transition between consecutive memory states in a traditional analog memory. (d) A two-parameter
learning model where weights W, W,, adapt in quantized steps to minimize a loss function L(W). The red trajectory
corresponds to the path resulting from the deterministic mapping of the learning algorithm onto hardware memory. The
blue paths correspond to possible LIM trajectories that evolve as random walks guided by the energy gradients. (e) In a
traditional memory, the transition between consecutive static states separated by constant energy barrier £° results in
constant energy dissipation (E) per update. (f) Memory barrier modulation (AE;...AE,,...) in LIM that matches the
dynamics of the learning process. (g) Micrograph of previously reported LIM cell array [41]] and (h) measured results
reported in showing barrier modulation based on (i) external potentiation and depression pulses.

modulated over time in increments .., AF,, 1, AFE,,, .. which effectively changes the update speed and the consolidation
properties of the memory.

Figure [3d shows the effect of such an adaptive energy-barrier modulation for a two-parameter model. Starting from an
initial state 1/ and low energy barriers, the memory updates are thermodynamically driven and guided by the loss
function gradient (acting as an extrinsic field) to the final and optimal state W . Unlike, the conventional memory
update dynamics, LIM dynamics exhibit a guided random-walk (or Brownian motion) [43] [44], as shown in Figure 34,
thus allowing for many possible physical paths from Wy — W ;. The important factor in LIM is the modulation of the
energy-barrier height that constrains these dynamics. As the trajectories approach the optimal state towards the end of
training, less frequent memory updates and better retention are required, which is achieved by increasing the height
of the energy barrier as shown in Figure [3f. The optimal modulation strategy is the one that ensures that the solution
to miny L(W) is reached at a prescribed time instant N. Here we assume that the change in energy barrier height
is directly coupled to the gradient of the loss function, but in the absence of such external gradients, external energy
can be injected to modulate the energy barrier of the memory. Such variants of LIM can be implemented on dynamic
analog memories [41], 42] that can trade-off memory retention or plasticity with the energy-efficiency of memory
updates. Figure 3z shows the micrograph of a previously reported LIM cell array and Figure [3h shows corresponding
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Figure 4: Key steps and assumptions involved in deriving the lower-bound on LIM energy-efficiency.

measurement results where the memory updates become more rigid over time as write/erase (or potentiation/depression)
pulses are applied as shown in Figure [3].

What is the lower bound on energy consumption for an Al system that is trained using the LIM paradigm? - is the key
question being addressed in this paper. In other words, we analyze the trade-offs between energy efficiency and speed
of training for different LIM energy-barrier modulation schedules. In this regard, this work differs from the traditional
non-reversible adiabatic approaches that are subject to Landauer’s limit [45] and the measurement entropy limit [46].
In the context of Al training, which is constrained by time and resources, the adiabatic approaches fail to capture the
energy dissipated at realistic memory update rates. Our exploration of the LIM-based energy-efficiency bounds is based
on a non-equilibrium approach where the physics of learning guides the dynamics of memory updates. The resulting
bounds clearly establish the connection between the energy-barrier height and the hyper-parameters corresponding to
the update- and consolidation-wall. Since our goal is to establish lower bounds that are agnostic to the idiosyncrasies of
the learning algorithms and heuristics, we will abstract the Al training problem in terms of general parameters like
model size, training time, learning rates and update rates. The flowchart in Figure [ outlines our approach for deriving
these non-equilibrium bounds. We first transform any gradient-descent-based Al training approach into a Lyapunov
dynamical system using Neural Tangent Kernels [47]. This formulation allows us to connect the algorithmic gradient
of the loss function to the physical energy gradient of a field that can modulate the energy-barrier height. Different
variants of LIM and the related bounds will be explored based on the injection of external energy to accelerate the LIM
dynamics to satisfy the computational speed constraints. Then using the LIM bounds we compare the energy efficiency
of some practical AI models.

2 Limits based on Non-reversible Operation

We first estimate the computational energy-efficiency limits based on the non-reversible adiabatic which will be used to
compare the equivalent LIM energy-efficiency bounds. Unless stated otherwise, our derivation will assume a dissipative
process for computing and memory updates, however, some of the intermediate steps in our procedure will assume some
form of energy recovery or energy recycling. For this section and the subsequent sections, we will assume an abstract
memory model shown in Figure [3p for a bi-stable potential well [48]] with two ensembles of low-energy micro-states
(W,—1 and W,,) separated by a barrier of height E°. The memory is said to be in the state W,,_, rather than in state TV,
when more of W,,_1’s energy micro-states are occupied than W,,’s energy micro-states. This description of physical
memory is very general and is applicable to electrons stored on a capacitor, to conformations in molecular memory [49],
to DNA hybridization states [50,51]], or to micro-filaments acting as memory states in a memristor.

Even though most of the low-energy states have a higher probability of occupancy, the higher-energy states can also be
occupied with a non-zero probability due to thermal fluctuations. The occupancy statistics of different energy levels can
be well described using Boltzmann statistics [52]. If K4, denotes the ground state occupancy for both states W,,_;
and W,,, then the number of occupied states K that exceed the energy-barrier Fy can be estimated as

EO
Ko=Knpazexp| —— | . 1
0 max p ( kT) ( )
where k denotes the Boltzmann constant and 7" the temperature. A priory, these K states above the energy barrier
can be attributed equally to either W,,_; or W,,, and hence represent a loss of information. Normalizing both sides in
equationby transition time 7 and denoting rates R° = Ko/r and R4, = Kme=/7 leads to a rate equation

EO
R = Ronas —— . 2
N ®
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Here R,,,. is a process- and device-specific constant that corresponds to the maximum rate at which micro-states of
W,—1 could transition to micro-states of I¥,,, when the energy barrier is absent (E° = 0). For our derivation, R, 44
is the maximum rate at which the learning mechanism updates model parameters. The rate R° represents memory
leakage. In most conventional memory the energy barrier is chosen to be so large that Ry is negligible at the operating
temperature, in order to ensure that the memory is persistent. For instance, practical memristive devices may have
an energy-barrier height of 106kT" which results in memory leakage rates Ry < 1072 [53]]. In resistive random-
access-memory (RRAM) devices, where the non-volatile state of the conductive filament between two electrodes
determines the stored analog value [54], the energy-barrier height can be as high as 1 pJ [55]. In charge-based devices
like floating-gates or FeERAM, where the state of polarization determines the stored analog value [22} 156, 57, the
energy-barrier is typically around 10 £J [57].

Using a higher energy barrier reduces memory leakage and thus increases memory retention, but this comes at the
expense of having to dissipate a significant amount of power during memory updates. Figure 3p-c depicts the typical
memory update procedure for the bi-stable memory model. Initially, the memory is in state W,,_1, and we want to
update it to state W,, # W,,_,. To this end, all the micro-states corresponding to W,,_; are elevated by AE ~ E°
to maximize the state transition rate. Once all the high-energy micro-states have transitioned to the lower-energy
micro-states in W,, the energy is lowered again, and the memory is now considered to be in state IW,,. Note that all
momentum imparted during the state transition is dissipated to the environment! Therefore, if the memory energy
barrier remains constant throughout the model training process this energy needs to be supplied externally whenever
parameters are updated in memory. To estimate a lower bound on the energy cost of memory updates for practical Al
models in a model-agnostic way, we assume a linear relationship between the number of performed FLOPs (# F LOPS)
and the total energy dissipation (E}4q). This assumption is supported by empirical evidence shown in Figure[I] For a
given bit-precision (#bits), we thus get the lower bound

Eiotal > #FLOPs x #bits X Ey; 3)

where Ey;; is the energy dissipated per state transition of a single bit. Using the above memory update strategy for a
typical memory with Ey;; = 1£J to 1 pJ, the projected energy dissipation for training a brain-scale Al system (here
chosen to mean 102® FLOPS at a precision of 16 bit) would be 102 TJ to 10° T.J, which is an astronomical figure. This
extrapolation of energy dissipation from FLOPs matches measured power dissipation metrics reported in the literature
for current state-of-the-art Al models, as shown in Figure @}

2.1 Landauer’s Limit and Measurement Limit

Can we do better than the process shown in Figure B, and what is the thermodynamic limit? The process shown in
Figure [3d forces a faster state transition but at the expense of higher energy dissipation. But if update speed is not
a constraint, then an adiabatic parameter update can be performed, for which the thermodynamic energy dissipation
is bounded from below by the Landauer limit. In this limit, the number of micro-states K4, in W,,_1 and W, in
Figure[3p is reduced to K4, = 1, and the only loss of energy is due to information erasure. This is shown in Figure5h,
where initially only the W,,_; state is occupied. As the energy barrier E° is lowered, both the states W,,_; and W,
become equally likely, resulting in an erasure of the stored information and an entropy increase in the surrounding
environment. This dissipates at least the Landauer energy Efaindauer given by

ELandauer > kT 10g2 ~ 0.69kT. (4)

By applying an (arbitrarily small) energy to the micro-states of W,,_;, the memory will ultimately converge to state
W.,,, at which point the energy barrier is restored. Note that in the classical Landauer’s limit, this (slow) state transition
from W,,_1 — W,, does not dissipate any additional energy because of adiabatic assumptions. Also, it is assumed
that the energy injected to lower the energy-barrier E° can be perfectly recovered to restore the barrier, as shown in
Figure [Sh (4)[58]. However, this is a highly idealized assumption; in practice, some of this energy is dissipated. A
lower limit on this energy is determined by the height of the energy barrier which in turn is by a measurement process.
Note that for Al training, Landauer’s Limit is incomplete, since the information stored in the memory needs to be read
out (or measured) for computing gradients which in turn determine the next memory (or parameter) update. Thus, for
compute-memory systems, the thermal noise due to measurement also needs to be taken into account [59, 46].

As shown in Figure Eb, measuring the state of the memory W,,_; or W,, requires sampling the stored information on a

measurement capacitance C,,,cqs. The measured signal W,,,.,s then admits two conditional probability distributions
shown as shown in Figure - where the variance of the Gaussian distributions 02 = =*1— are determined by the

meas

Johnson-Nyquist Thermal Noise [60]. In the adiabatic limit where the probability of measurement error peyyor — 0.5,
the fundamental energy limit incurred by the measurement noise is given by [46],

En(n',se ~ 435](1T/blt (5)
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Figure 5: (a) Adiabatic bi-stable memory transition from state W,,_; to W,, which leads to the Landauer limit; (b)
Measurement of the current memory state as voltages sampled on a sampling capacitor Cy,eq5, Which is limited by the

Johnson-Nyquist thermal noise variance given by CkT -

For a brief description of the equation E} the readers are referred to [46] [S9] for additional details.

Therefore, combining Landauer’s limit with the measurement limit leads to the adiabatic energy-dissipation limit per bit
of operation as
Ercasurement = 4.35kT /bit + 0.69kT /bit = 5.04kT/bit. 6)

The measurement limit accounts for the thermal fluctuations during the process of memory state transfer onto the
measurement capacitance at the adiabatic limit, as well as the entropy gain due to the computation. But it relies on
thermal equilibrium dynamics to perform the memory state transition, which implies an adiabatic (i.e. slow) information
transfer rate, and thus severely underestimates the power consumption of any real-world applications that require
non-equilibrium dynamics to sustain a higher information transfer rate.

3 Energy-efficiency lower-bound for Learning-in-Memory

The adiabatic energy dissipation limits derived in the previous section provide a good intuition for (a lower bound
on) the memory-wall of conventional computing systems, but they are impractical since they assume thermodynamic
equilibrium between each computational step and hence do not take into account time or operational constraints within
which the training should be completed. Furthermore, these bounds do not provide any insights into overcoming the
update-wall and the consolidation-wall. In this section, we derive thermodynamic limits for a LIM-based Al training
framework [17] where the memory energy-barrier profile is dynamically adjusted to trade-off between the memory
update rate, memory consolidation rate, and memory retention.

3.1 Relation between Barrier height, Update-rate, and Extrinsic Energy

We modify the dynamics of the physical memory model described in section 2] to include the time-varying baseline
state-transition rate RY for time-step n, and the time-varying energy-barrier height E°, which are related to each other
as

EO
R® = Rypaz €Xp (—”) . (7)

When the energy of the micro-states of W,,_; and W,, are shifted relative to each other by AF,,, then the forward

state-transition rate W,,_; — W, increases compared to the backward state-transition rate W,,_; < W,,, as shown
in Figure @ If forward/backward transition rates about the baseline rate R{ are represented as RO + RT and
RY — %, respectively, then the net forward transition rate or the update rate R,, can be written in terms of the effective
energy-barrier heights E,, _1_,,, and E,,_1,,, according to

R EO
0 fin _ _ n—1—n
R, + 5 Rpnaz €xp ( 7 )
R, E°_
Ry =" = Rmasexp (—,;;) (8)
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Figure 6: (a) Thermodynamics of memory state transitions during learning. (b) Retention (energy barrier height) versus
energy gradient for different normalized update rates R = R,,/R,q.. Learning can evolve in different trajectories
as the energy gradient is minimized while the retention increases, both contributing to the asymptotically decreasing
update rate ?. The shaded area indicates regions of infeasible update rates.
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where EO | . =FEY |, ~— AFE,, as shownin Figure@ Combining equationsandleads to the update rate 12,
as
) o (i) -1
i) e (35 +1
Note that equation [0]models a non-equilibrium operation where the update-rate R,, < R4, changes with time-varying

barrier-height E? and the extrinsic energy AF,,. Conversely, the energy barrier required to achieve an update-rate R,,
is given by

R, = 2R,,qz €xp ( 9)

2Rmes P (57%) — 1
’ AL,

i)+
The E° — AF relationship is fundamental to the LIM energy-dissipation bounds. Note that for R,, = R4, and

AE — oo we recover Landauer’s limit EQ = kT log(2). On the other hand, when E° = 0, we can achieve R,, = Rax
for AE = KT log(3), which sets an upper limit on the extrinsic energy that can be injected to increase the update rate.

E% = kTlog ) (10)

Rn exp (

In Figure [6b| we plot Equation|10|for different values of the normalized update rate R = Bn/R,,.... Along the x-axis
(i.e. for EY = 0) we see memory updates that occur due to the external field AE,, in the complete absence of an
energy barrier. Along the y-axis (i.e. AE = 0) we see pure memory consolidation with no parameter updates, at all.
During the process of learning, computation first proceeds at a normalized rate 1 > R > 0 (in the presence of extrinsic
energy AFE) but asymptotically, as n — oo and the training process converges, R,, — 0. However, at the end of the
training, the learned parameters need to be consolidated by increasing the energy barrier to prevent memory leakage.
Thus, different training algorithms will follow different trajectories in the E° — AE plot, as shown by A;, Ao, .. and
Bi, Bs, .. in Figure |6bl Each of these trajectories would dissipate different energy based on the temporal profile of
E? and AE,,. Figure[6blalso shows the inadmissible region where R = Bn/R,,.. > 1,i.e. R, exceeds the maximum
update-rate R,,,,. In the next section, we will first connect the extrinsic energy AF,, to the learning gradients in Al
training algorithms and then investigate the energy-dissipation lower bounds for different learning trajectories as they
traverse the E° — AF plane.

3.2 Gradient-Descent based LIM as an Energy Minimization Problem

In this section, we connect the extrinsic energy factor AE in Equation [T0]to the parameter gradients used in Al training
and reformulate LIM as the (convex) problem of minimizing the energy of a system. Without loss of generality, we will
assume that the AI model is trained by minimizing a loss function over a set of training data. Since the objective of this
paper is to estimate lower bounds on energy dissipation that are agnostic to the specific loss function and the distribution
of the training set, we will make some general assumptions on the nature of the loss function and the training procedure
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used to estimate the model parameters. In the framework of supervised learning, the training algorithm is provided with
a set of feature vectors T C X : T = {x;},i = 1, .., M that are drawn independently from a fixed distribution. Also
provided are a set of labels or target outputs O C Y : O = {y;},i = 1, .., M for each of the feature vector in the set
X. The training algorithm then estimates the parameters w € R of a model f : X — ) such that a loss-function
L : O x O — R, is minimized over the entire training set. If w,, denotes the parameter vector at time-instant n and if
£, = f(X;wy) = {f(z1; Wn), f(x2; W), .., f(z1; W,)} denotes the AT model function evaluated on each element
of the training-set X at the time-instant n, then L,, = L(f(X;w,),)) denotes the composite loss-function that is
evaluated over the entire training-set at time-instant n. Although the loss-function L is convex w.r.t f or the gradient
VL > 0, due to the non-linearity of f w.r.t w, L is also non-linear w.r.t the parameters w. We will therefore use
a Neural Tangent Kernel (NTK) framework [47] to convert the Al training formulation into a convex optimization
procedure. To apply NTK, we will assume that the parameters w are estimated iteratively using a gradient-descent
algorithm of the form

Aw, = —¢, (VWLH) = —€n (vwfn) (Van) (11

where Aw,, denotes the incremental change in the parameter vector at time-instant n and ¢,, > 0 is a time-varying
learning-rate hyperparameter. Note that since the function f is evaluated over the entire training set of size M, V£, is
a D x M matrix and VL, is a M x 1 vector. The incremental change Af,, of the Al model at time-instant n for each
element of the training set can be expressed as

Af, = (vwfn)T Aw,, = —¢€, [(wan)T (vwfn>] (van) . (12)

Here K,, = (Vwf,)T (Vwf,) is a M x M positive-definite matrix, also known as the Neural Tangent Kernel
(NTK) [47]. Using Equation@ the incremental change in the loss-function AL, at time instant n can be written in
terms of the NTK matrix K,, as

AL, = (VfL,)TAf, = —€, (VsL,)" K, (VsLy) (13)

The use of NTK formulation thus renders the gradient-descent-based training as an equivalent convex optimization
problem, where the convergence properties of the training algorithm rely solely on the positive-definiteness of the
time-varying NTK matrix K,,. However, it has been reported in the literature that the statistical and spectral properties
of K,, remain stationary for large Al models [9], and as a result, the convergence of most Al training procedures
becomes agnostic to the choice of the training set (as long as the data distribution remains stationary).

The positive-definite property of K,, allows us to treat AL,, in Equation [13|as the energy of a system comprising
coupled memory elements. If we can physically construct such a system, i.e. the system’s energy function corresponds
to the NTK of an AI model, then reducing the loss of the model is equivalent to bringing the system into a lower
energy state. If the released energy due to a gradient-step AL,, can be recovered, it can thus be re-used to drive the
memory/parameter updates. Since K,, is a M x M matrix, we will assume that the AI model comprises M physical
memory elements. Thus, the algorithmic energy gradient A L,, can be connected to the extrinsic physical energy AFE,
per memory element in Equation [I0]as

MAE,, = —kTAL,,. (14)

If Appin > 0 denotes the smallest eigenvalue of K,,, then AF), in equationcan be bounded from below by

kT
AE, > ﬁen)\minHVan”Q (15)

where ||.||2 denotes an Lo norm of the vector. If we assume that the learning algorithm reaches the neighborhood of
the stationary solution of the NTK-based dynamical system, where the neighborhood is defined by the region around
VL, = 0 within P bits of precision, then ||V L,|2 > M272P_ Denoting C = A\,;»27 2" as a learning model
dependent parameter, Equation [T3]combined with Equation[T0]leads to

2Rz exp(Cep) — 1
R, exp(Ce,)+1]"

E% > kTlog (16)

Equation[T6represents a key LIM lower-bound that connects the height of the energy-barrier to key metrics associated
with the update-wall and the consolidation-wall. The update-rate R,, models the speed of computation at a time-instant
n, which can be adjusted by modulating the height of the energy-barrier EO. According to the Equation E? can also
control the learning-rate parameter €,, which has been shown to control the dynamics of memory-consolidation [39}161]].
In literature, different learning-rate dynamics have been proposed that can theoretically achieve optimal consolidation
by maximizing the memory capacity and facilitating continual learning.
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Figure 7: Variant of the learning-in-memory (LIM ) where (a) external energy AFE.;...AFE, is injected to accelerate
training for cases where (b) the landscape of the energy gradient is flat.

3.3 Estimation of LIM Energy-dissipation Lower-bound

The lower bound in Equation [16] shows the relationship between the memory energy-barrier height, the update rate,
and the learning rate. The update- and learning-rate dynamics during training thus determine the lower bounds on E?,
as well as the extrinsic energy AFE,, via Equation[I0] Both of these contribute to the total dissipated energy, that is,
energy is dissipated for building up the barrier EY; over IV time-steps and to perform the individual state transitions
with energy-cost A FE,,. For a total of M physical memory elements, the total energy dissipated can thus be estimated as

N
EpA.. = M (Z R,AFE, + E?V> (17)
n=1
N
> M <kTO > Rnen + E?V> . (18)
n=1

The superscript A in EZ_, . will be used to differentiate between the estimated energy dissipation for different LIM
variants (in this case LIM4). For Equation [I0] we assumed that the memory updates are driven by the gradient of
the network energy AE,,. According to Equation[I5] the magnitude of AE,, is determined by the eigenvalues of the
NTK matrix K,,. Under pathological conditions, the minimum eigenvalue \,,;, ~ 0, in which case AFE,, ~ 0 implies
insufficient extrinsic energy to drive the computation forward, i.e. R,, ~ 0. This is depicted in Figure [7p. To overcome
this pathological condition, we consider another variant of the LIM (labeled as LIM ) where instead of relying on
the loss-gradient to provide the extrinsic energy AE,,, the additional external energy EY is injected to accelerate the
memory updates, as shown in Figure . In this case, the total energy dissipated EZ , , after N time-steps is estimated
as

N
Ef i =M (Z R,EQ + E%) : (19)

n=1

In the next section, we will use equations |18 and (19| to estimate Eii‘oml and EB . . for different update-rate and
learning-rate dynamics.

3.4 LIM lower-bounds for large AI models

To apply the LIM lower bounds to different learning algorithms and memory systems, we first introduce four asymptotic
constraints on the dynamics of the update rate R,, and the learning rate €,,. The dynamics then specify how the
barrier height should be modulated according to Equation[I6] which we use to estimate the energy-dissipation bounds
E# .. and EE | . civen by Equations and Irrespective of the choice of gradient-descent algorithms or memory
consolidation strategies, learning rate schedules are typically chosen to ensure convergence [62,163l164] or to maximize
memory capacity [65]]. This implies the following constraints on the discrete-time dynamics:

lim e, = 0

n—o0

o0

Zen = oo (20)
n=1

10
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For example, [36] 42]] propose a learning-rate schedule ¢,, = O(1/n), which satisfies both constraints 20} for achieving
optimal memory consolidation. Similarly, the update-rate R,, should decay to zero at the end of training, and the barrier
height EY needs to be sufficiently high to ensure memory retention. These constraints can be mathematically expressed
as

lim R, = 0
n— oo
lim EY > 10kT (1)

Example 1: To show the implication of the lower-bound in equation [[6and the choice of a specific update-rate R,,
schedule, consider the learning rate schedule ¢,, = 1/n and the update-rate schedule Bn/R,,.. = A/n where A > 0 is
an arbitrary constant. Note that while this choice of R,, satisfies constraint [21]

Jim > R, =00 (22)

implying that the computation never stops. Inserting the schedule for ¢, and R,, in the lower-bound[T6|leads to

CR’ITL(II
lim E° > kT log [ ] . (23)
n—oo A

The bound [23]is satisfied by an asymptotic barrier height and has a similar flavor as Landauer’s limit that depends on
the precision of memory retention. However, like Landauer’s limit, the bound is only achieved for adiabatic operations
when there is no upper limit on the number of operations.

In practice, we would like to impose an upper-bound on the number of training operations (or equivalently #F LO Ps)
which implies the following constraint on the update-rate R,, overall M parameters:

N
M lim ; R, = #FLOPs (24)

We use the #F' LO P presented in Figure|[T]to estimate lower bounds on energy-dissipation for realistic model sizes.

Example 2: We now consider the learning rate schedule ¢, = 1/n and the update-rate schedule £n/R,,,. = 1/n'*7
with v > 0. This choice of R,, ensures that Equation [24]is satisfied, so the energy-dissipation lower-bound for LIM 4
can be estimated from Equation [I8]as

N
Bfa = M <ch > Ruen + E?v) 2
n=1
N
- M <kTC > };;nf: t E10v> (20
n=1
X M [KTCRmaaC(2+7) + EX] ¢

where ((.) is the Riemann-zeta function approximation for large N. Similarly, the energy-dissipation lower-bound for
LIMp can be estimated as

N
Efoas = M (Z R.E; +E?V> (28)
n=1
N
Riaz 14 exp(C/n)—1 o

For large N, the discrete-time summation can be approximated as an integral by incorporating using a sampling interval
At which leads to

© R exp (C‘/t) -1
ERB.u > M lcT/1 tﬁaf log tlﬂ.ﬁ dt + EY (30)
exp (
1 exp (Cz) —1
~ M kTRmM/ %7 log 11+ P ( . ) de+E% | . (31)
0 T exp (Cm) +1

11
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Figure 8: Update rates £n/R,,.., R1 — R4 for (a) different energy barrier E schedules and for an optimal consolidation
rate schedule €,, ~ 1/n where : (b) {R1 ~n~ 15 R2~n"8 R3 ~ e " R4~ n-loen}

and where C' = C /At. The integral in equationcan be estimated in a closed form which then forms the energy-
dissipation lower-bound for LIM g with a specific learning-rate and update-rate schedule. The same procedure can be
applied to different types of schedules, but a closed-form analytical solution may be difficult to find. We therefore resort
to numerical approaches and show simulation results for different schedules in the next section.

4 Results

In this section, we present numerical results that illustrate the design trade-off between different energy-barrier
modulation schedules and the update rate R,, dynamics and the consolidation parameter €,, dynamics given by
Equation [T6] These results are then used to estimate the lower bounds on total energy consumption for training
state-of-the-art Al workloads based on different variants of LIM, namely LIM 4 and LIM p whose lower-bounds are

given by Equations [T8]and [T9}

In the first set of experiments, we achieve the desired update rate R,, dynamics by controlling the dynamics of E?
under fixed consolidation rate schedule ¢,, ~ 1/n. Figure|8|shows several examples of update schedules that can be
realized by changing the barrier height E? with respect to discrete unit time n which is depicted along the x-axis. The
time evolution of E? is chosen to obtain the predetermined update dynamics such that it satisfies the constraints given

by equations [21]

The learning rate schedule €,, ~ 1/n is chosen for optimal memory consolidation [66] [67]] which is achieved under
specific operating conditions. Figureplots the update-rate R,, resulting from the choice of ¢, and EY dynamics in
equation %ﬂ The trade-offs among the different schedules are evident in Figure[8a|8b] where faster-increasing energy
barrier E) 3 incurs faster decaying update rate R3. As a result, the final energy-barrier EY; is higher when the training
stops, thus satisfying constraint 2| which ensures that the learned parameters are retained. However, when R,, decays
faster with time, R,,,, needs to be chosen to be higher to ensure that the computational constraints @is satisfied. On
the contrary, for E?Ll and corresponding R1, the memory retention is poor but the required R,,,,, is smaller. In practice,
the maximum update rate R,,,, can be estimated by fr or the maximum switching frequency of physical switching
devices. For example, silicon-germanium heterojunction bipolar transistor [68]] and an ultrafast optical switch [[69]]
can exhibit maximum switch-rates close to 1 THz, equivalently, R4, ~ 1012 /s. Therefore, there exists a trade-off
between the memory retention requirement(E?V) and hardware realizability(R,,,qz)-

For the LIM variant (LIM ) the total energy consumption is determined by the rate at which the external energy (equal
to the barrier height E?) is injected into the system. Thus, the instantaneous power consumption of the external energy
source is given by RnE,OL = RmawREg, where R = Bn/R,,.. is the normalized update rate. Since R4, is dependent
on computation complexity a targeted computation workload #F LOPs = 10'2 is used to normalize the power
dissipation of the various LIMp schedules, as shown in Figure Qa] The total energy consumption is estimated by
computing the area under the curve in Figure [Daand includes both the energy dissipation due to externally injected

energy and the energy for gradually building up the memory barrier. In Figure OB we present only the energy
consumption for external sources, given by ij:l R, E?, to demonstrate the trade-off between different LIM dynamics.

As evident in Figure[9b] E'1 through E'3, the energy dissipated per update inversely corresponds to the rate of decay of
R,,. However, the asymptotically faster-decaying R4 ~ n~'°8™ comparing to R1 and R2, incurs the highest energy

12
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Figure 9: (a) Instantaneous power dissipation (R, E?) for different LIM g variants { Rl ~ n=15 R2 ~ n=8 R3 ~
e~ R4 ~ n~'°8"} where the total number of FLOPs is set to 10'2; (b) Energy dissipation corresponding to different
variants { E1 = 1.74 x 102 kT, E2 = 1.14 x 1012kT, E3 = 0.82 x 102 kT, B4 = 1.97 x 10'2kT}.
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Figure 10: Estimated energy dissipated compared against the reported energy dissipation for real-world Al training
workloads [[7]. From left to right, the corresponding Al models are: T5, Meena, Gshard-600B, Switch Transformer,
GPT-3, LaMDA. Also shown is the projected energy dissipation to train a Brain-scale AI model using different
approaches.

cost. This can be explained by the temporal relationship between R and E? and the fact that the majority of power is
dissipated during the beginning phase of the training process as shown in Figure Da]

Based on results presented in Figure[9} the energy lower bounds for LIM frameworks vary depending on the desired
energy barrier schedules. Hence, to estimate the LIM energy lower bounds for training realistic Al workloads in
an algorithm-agnostic way, we choose the EY schedule that yields the lowest normalized energy dissipation in our
previous numerical simulation, which corresponds to the update and learning rate dynamics of Bn/R,,., ~ n~ 108"
and €, ~ n~'. To put the LIM energy estimates in perspective, we contrast them with the energy dissipation for
training the same workloads on current CPU, GPU and resistive RAM(RRAM) CIM devices [21]], using Equation [3]
to estimate their respective energy consumption from the number of required FLOPs. For further reference, we also
include the thermodynamic limit for adiabatic computing (Landauer’s Limit) and the true energy dissipation reported
in the literature [[7]. As shown in Figure[I0] the theoretical lower bounds on energy dissipation of both LIM 4 and its

13
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variant LIM g are about an order of magnitude higher than Landauer’s adiabatic computing limit, yet they are around
six orders of magnitude lower than any of the existing hardware platforms can currently achieve. This result is roughly
100 MJ for AI workloads with 10?® FLOPs and 10'® parameters, equivalent to generic brain-scale Al models. Putting
this into perspective, this energy lower bound for training an entire brain-scale Al model on LIM systems would be
equivalent to the energy dissipation of only ~ 67.5 — 135 hours usage of an NVIDIA A100 GPU[70]]. This energy
lower bound shows that LIM-based compute-memory platforms that dynamically adjust memory energy barriers can, in
principle, reduce the energy cost of training large Al models by several orders of magnitude.

5 Discussions

In this paper we first derived lower bounds on energy dissipation for an LIM paradigm and the results were then
extrapolated to estimate the minimum energy required to train an Al system under real-world constraints. The bounds
presented here correspond to a non-reversible computing approach where we have assumed that energy cannot be
recycled or recovered for later use. We acknowledge that incorporating energy recovery methods like those proposed
in [[71]] could further improve the lower bounds. Also, the lower bounds can be improved by incorporating reversible
computing approaches and logic devices [72]], however, the control of such devices incurs a significant overhead. For
proposed non-reversible bounds, the dissipation limits are determined by thermodynamic principles. As illustrated in
Figure 3, conventional Al training hardware performance one-to-one mapping between the algorithmic updates and the
updates executed on hardware. As a result, the entropy of the hardware update trajectory starting from the initial state to
the final state is practically zero. The energy that is dissipated in the process (by keeping the memory barrier height
higher) is to ensure that the entropy does not leak out. However, this algorithm-to-hardware mapping fails to ignore two
general facts about Al training algorithms or optimization algorithms: (a) parameter updates that are guided by the
optimization gradients have an inherent error-correcting capability (gradients direct the updates towards the optimal
solution), hence paths can absorb fluctuations; and (b) fluctuations in parameter trajectory act as regularization in many
Al training algorithms and hence has beneficial effects. The LIM paradigm essentially achieves both by exploiting the
combination of thermal fluctuations and memory barrier modulation and in the process dissipating less energy.

The extrapolation of the LIM lower-bound to estimate the minimum energy dissipated for realistic AI workloads is
based on the trends shown in Figure|l} The relationship between model size (number of parameters) and computation
complexity (number of FLOPs) was extrapolated from numbers reported in the literature. Prior to a certain model size
threshold (10%), the computation grows polynomially w.r.t. the number of parameters while this trend becomes linear
after the development of Al models surpasses the inflection point. While this work did not go in-depth to investigate the
quadratic-to-linear phase transition, we can speculate several possible reasons that could be topics of future research.
The first reason could be a practical limitation that arises from the model size (10°) at the phase transition. For model
size less than 10, the parameters could be directly stored in the main memory and as a result, the energy cost of
optimal pair-wise comparison is manageable. Beyond 10° parameters, external storage needs to be accessed, in which
case the prohibitive energy cost dictates practical online training algorithms whose complexity grows linearly. The
second reasoning for the phase-transition observed in Figure |1{ could be more fundamental. It is possible that the
quadratic-to-linear transition can be explained using the Tracy-Widom distribution [[73]], which is the universal statistical
law underlying phase-transition in complex systems, such as water freezing into ice [[74], graphite transitioning into
diamond [75], and metals transforming into superconductors [76]]. Systems governed by the Tracy-Widom universality
class the statistical curve’s skewness mirrors the distinct nature of these two phases. In the phase characterized by strong
coupling, the system’s energy scales quadratically with the number of components/parameters. Conversely, in the phase
of weak coupling, the energy is directly related to the count of components/parameters. The training of models also
seems to have followed this strong-to-weak trend, deep neural network architectures have become more modular and
embedding attention mechanisms in Large Language Models(LLM).

While the theoretical results described in the paper suggest that the minimum energy required to train a brain-scale
Al system using the LIM paradigm is ~ 6 orders of magnitude lower than the projected energy dissipation for other
approaches, the article does not prescribe a specific method to approach this limit. The key assumption that was made
in the derivation of LIM lower-bound is the NTK transformation which has to be known a priori. The transformation
allowed the mapping of the training problem into a convex optimization problem which was then mapped to physical
energy through Lyapunov dynamics. However, in practice, the energy consumption of computing and storing the
tangent kernel, which scales with the size of the training data set, is not negligible. Furthermore, since LIM memory
updates are performed through the physical energy gradients that are inherent to the network, the individual LIM units
need to be coupled to each other to form a flat memory system. In [42] we proposed one such LIM array based on
dynamic floating-gate technology, where each memory unit updates itself to minimize the overall energy consumption
rather than individual local energy. Implementing the LIM-based training using coupled memory devices in silicon
would be a subject of future research.
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6 Conclusion

The thermodynamic limit presented in this paper and in particular Equation [T6] describes how the memory energy
barrier height is connected to two important parameters: (a) the parameter update rate; and (b) the learning rate, both
of which determine two of the three performance walls, namely, the update-wall and the consolidation-wall. For
instance, the update-wall is reflected in the profile of the update-rate R,, for each of the parameters and Equation (T6)
shows how a specific update-profile R,, can be achieved by modulating the barrier-profile the learning-in-memory
paradigm. Similarly, the learning-rate €,, determines the consolidation-wall. Several adaptive synaptic models have been
proposed [35}136]] that show how a specific learning-rate profile can lead to optimal information transfer-rate between
short-term and long-term memories. In the LIM paradigm, the memory energy-barrier can be modulated to also control
€, according to Equation (I0). Energy-barrier modulation supporting the LIM paradigm could be implemented in a
variety of physical substrates using emerging memory devices. For instance, recently, we reported a dynamic memory
device [41] that could also be used to modulate the memory retention profile and could be an attractive candidate to
implement the LIM paradigm. However, note that to approach the fundamental energy limits of training/learning one
would need to address all three performance walls. Compute-in-memory (CIM) alternatives where the computation and
memory are vertically integrated in massively parallel, distributed architecture offer substantially greater computational
bandwidth and energy efficiency in memristive neuromorphic cognitive computing [21]] approaching the nominal energy
efficiency of synaptic transmission in the human brain [[77]. Resonant adiabatic switching techniques in charge-based
CIM [78] further extend the energy efficiency by recycling the energy required to move charge by coupling the capacitive
load to an inductive tank at resonance, providing a path towards efficiencies in cognitive computing superior to biology
and, in principle, beyond the Landauer limit by overcoming the constraints of irreversible dissipative computing. It is
an open question whether the learning-in-memory energy bounded by Equation could also be at least partially
recovered through principles of adiabatic energy recycling.
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