Ring Resonator Simulation¶
This tutorial demonstrates how to simulate a ring resonator using BEAMZ. Ring resonators are important components in integrated photonics for filtering and sensing applications.
Overview¶
In this tutorial, you will learn:
- How to create a ring resonator structure
- How to simulate light coupling between a waveguide and a ring
- How to analyze resonance effects
- How to visualize the results
Code Example¶
from beamz import *
import numpy as np
# Parameters
WL = 1.55*µm # wavelength
TIME = 120*WL/LIGHT_SPEED # simulation duration
X = 20*µm # domain width
Y = 19*µm # domain height
N_CORE = 2.04 # Si3N4 refractive index
N_CLAD = 1.444 # SiO2 refractive index
WG_WIDTH = 0.565*µm # waveguide width
RING_RADIUS = 6*µm # ring radius
DX, DT = calc_optimal_fdtd_params(WL, max(N_CORE, N_CLAD))
# Create the design
design = Design(width=X, height=Y, material=Material(N_CLAD**2), pml_size=WL)
# Create the bus waveguide
design += Rectangle(position=(0,WL*2), width=X, height=WG_WIDTH,
material=Material(N_CORE**2))
# Create the ring resonator
design += Ring(position=(X/2, WL*2+WG_WIDTH+RING_RADIUS+WG_WIDTH/2+0.2*WG_WIDTH),
inner_radius=RING_RADIUS-WG_WIDTH/2,
outer_radius=RING_RADIUS+WG_WIDTH/2,
material=Material(N_CORE**2))
# Define the signal & source
time_steps = np.arange(0, TIME, DT)
signal = ramped_cosine(time_steps, amplitude=1.0, frequency=LIGHT_SPEED/WL,
phase=0, ramp_duration=WL*20/LIGHT_SPEED, t_max=TIME/3)
design += ModeSource(design=design,
start=(WL*2, WL*2+WG_WIDTH/2-1.5*µm),
end=(WL*2, WL*2+WG_WIDTH/2+1.5*µm),
wavelength=WL, signal=signal)
design.show()
# Run the simulation
sim = FDTD(design=design, time=time_steps, mesh="regular", resolution=DX, backend="numpy")
sim.run(live=True, save_memory_mode=True, accumulate_power=True)
sim.plot_power(db_colorbar=True)
Step-by-Step Explanation¶
1. Import Required Libraries¶
from beamz import *
import numpy as np
2. Define Simulation Parameters¶
WL = 1.55*µm # wavelength
TIME = 120*WL/LIGHT_SPEED # simulation duration
X = 20*µm # domain width
Y = 19*µm # domain height
N_CORE = 2.04 # Si3N4 refractive index
N_CLAD = 1.444 # SiO2 refractive index
WG_WIDTH = 0.565*µm # waveguide width
RING_RADIUS = 6*µm # ring radius
3. Create the Design¶
design = Design(width=X, height=Y, material=Material(N_CLAD**2), pml_size=WL)
# Create the bus waveguide
design += Rectangle(position=(0,WL*2), width=X, height=WG_WIDTH,
material=Material(N_CORE**2))
# Create the ring resonator
design += Ring(position=(X/2, WL*2+WG_WIDTH+RING_RADIUS+WG_WIDTH/2+0.2*WG_WIDTH),
inner_radius=RING_RADIUS-WG_WIDTH/2,
outer_radius=RING_RADIUS+WG_WIDTH/2,
material=Material(N_CORE**2))
4. Define the Source¶
time_steps = np.arange(0, TIME, DT)
signal = ramped_cosine(time_steps, amplitude=1.0, frequency=LIGHT_SPEED/WL,
phase=0, ramp_duration=WL*20/LIGHT_SPEED, t_max=TIME/3)
design += ModeSource(design=design,
start=(WL*2, WL*2+WG_WIDTH/2-1.5*µm),
end=(WL*2, WL*2+WG_WIDTH/2+1.5*µm),
wavelength=WL, signal=signal)
5. Run the Simulation¶
sim = FDTD(design=design, time=time_steps, mesh="regular", resolution=DX, backend="numpy")
sim.run(live=True, save_memory_mode=True, accumulate_power=True)
sim.plot_power(db_colorbar=True)